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Abstract  

Mineral dust interacts with the climate by modifying the Earth’s radiation budget and by 

transporting nutrients to the terrestrial and marine ecosystems. To estimate how the 

atmospheric dust loading will change in the future it is important to understand the 

processes that control the quantity of dust in the atmosphere. Current dust cycle models are 

unable to predict changes in the extent of arid and semi-arid regions caused by the transient 

response of vegetation cover to the climate. As a consequence, it is not possible to predict 

the expansion and contraction of these regions on seasonal and inter-annual time scales.  

 

A new dust cycle model is developed which uses the Lund-Potsdam-Jena dynamic global 

vegetation model to calculate time evolving dust sources. Surface emissions are calculated 

by simulating the processes of saltation and sandblasting.  Dust is transported in the 

atmosphere by advection, convection and diffusion and removed from the atmosphere by 

dry deposition and sub-cloud scavenging. To improve the performance of the model, 

threshold values for vegetation cover, soil moisture, snow depth and threshold friction 

velocity, used to determine surface emissions are tuned.  The effectiveness of three sub-

cloud scavenging schemes are also tested. The tuning experiments are evaluated against 

multiple measurement datasets.  

 

The ability of the new model to predict seasonality in the dust cycle is evaluated. The 

model is successful at predicting the seasonality in dust emissions from North Africa, 

South Africa, Patagonia, North America, and Asia but not in Australia where LPJ is unable 

to predict the vegetation dynamics correctly.  In all regions maximum emissions occur 

when low precipitation combines with a high frequency of wind speed events greater than 

2ms
-1
. In Patagonia, surface emissions are strongly anti-correlated with precipitation 

because wind speeds exceed 2ms
-1
 continuously throughout the year. Vegetation cover 

constrains emissions in North America, Central Asia, Eastern China and South Africa. 

 

The new model has been used to investigate whether changes in vegetation cover in the 

Sahel can explain the four-fold increase in dust concentrations measured at Barbados 

during the 1980s relative to the 1960s. Results showed there was an expansion of the 

Sahara in 1984 relative to 1966 resulting in a doubling of emissions from the Sahel. This 

alone is not enough to account for the high dust concentrations in 1984. This finding adds 

strength to the hypothesis that human induced soil degradation in North Africa may be 

responsible for the increase in high dust concentrations at Barbados during the 1980s 
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relative to the 1960s. To predict how dust source areas will change in the future it is 

important to disentangle processes which cause natural variability from anthropogenic 

effects.  

 

 

 

 

 

 

 

 

 

 

 

  



 3 

 

Acknowledgments 

 

I would like to thank my supervisors Dan Lunt and Sandy Harrison for their continued 

support over the course of the PhD. Thank you to Dan for the all meetings which helped 

with the scientific and technical aspects of the PhD as well as providing encouragement 

and motivation. Thank you to Sandy Harrison for her contribution to original idea for the 

project and her involvement with the GREENCYCLES-RTN which provided the funding 

for this work. I also wish to thank the people I met in the GREENCYCLES network who 

made the GREENCYLES meetings and the ERCA summer school very memorable. I 

would like to also extend thanks to my fellow postgraduate students in Browns for the tea 

breaks and social events over the last four years which made Browns a great environment 

to work in.   

 

Finally, thanks to James Wilkinson for all his support, especially over the last year. Thank 

you for all your help, using the compute cluster and for listening to me talking about dust.   

 

 

 

 

  

 



 4 

 

Authors' Declaration 

I declare that the work in this dissertation was carried out in accordance with the 

requirements of the University's Regulations and Code of Practice for Research Degree 

Programmes and that it has not been submitted for any other academic award. Except 

where indicated by specific reference in the text, the work is the candidate's own work. 

Work done in collaboration with, or with the assistance of, others, is indicated as such. 

Any views expressed in the dissertation are those of the author. 

 

SIGNED: .........................................   DATE:……………………..................... 

 



  

 5 

Abstract .................................................................................................................. 1 

Acknowledgments ................................................................................................. 3 

Authors' Declaration.............................................................................................. 4 

1 Introduction .................................................................................................. 7 
1.1 The dust cycle ......................................................................................................... 7 
1.2 Dust-climate interactions .................................................................................... 10 
1.2.1 Direct radiative forcing........................................................................................ 11 
1.2.2 Indirect radiative forcing and cloud formation ................................................ 13 
1.2.3 Biogeochemical cycles ......................................................................................... 14 
1.2.4 Dust and tropical storm formation.................................................................... 15 
1.2.5 Carbon dioxide fertilisation................................................................................. 16 
1.3 Temporal variability in the dust cycle ................................................................ 16 
1.3.1 Seasonal variability ............................................................................................... 17 
1.3.2 Decadal variability ................................................................................................ 19 
1.4 Advancements in dust cycle modelling ............................................................. 21 
1.4.1 Treatment of wind speed dependency in dust models.................................... 22 
1.4.2 Treatment of transport and removal processes in dust models..................... 23 
1.4.3 Treatment of preferential dust source regions ................................................. 23 
1.4.4 Treatment of vegetation cover in dust models................................................. 24 
1.5 Aims ....................................................................................................................... 26 

2 Dust model description .............................................................................. 35 
2.1 The Lund-Potsdam-Jena dynamic global vegetation model........................... 35 
2.2 Validating LPJ outputs used to calculate dust source areas............................ 38 
2.2.1 Evaluation of simulated and observed FPAR .................................................. 40 
2.2.2 Evaluation of simulated and observed seasonality in FPAR.......................... 42 
2.2.3 Evaluation of simulated and observed inter-annual variability in FPAR...... 47 
2.3 Using LPJ to calculate dust source areas........................................................... 48 
2.4 The dust flux calculation ..................................................................................... 53 
2.4.1 Soil texture and particle size distribution .......................................................... 54 
2.5 Dust transport and removal................................................................................ 56 
2.5.1 Dry deposition ...................................................................................................... 57 
2.5.1.1 Gravitational Settling ........................................................................................... 58 
2.5.1.2 Transport across the sub laminar layer.............................................................. 59 
2.5.2 Wet Deposition..................................................................................................... 60 
2.6 Optimising TOMCAT......................................................................................... 62 
2.7 A base line dust simulation ................................................................................. 63 

3 Dust model tuning...................................................................................... 68 
3.1 Tuning the threshold limits for surface emissions........................................... 71 
3.2 Sub-cloud scavenging schemes........................................................................... 75 
3.3 Target datasets ...................................................................................................... 77 
3.4 Results .................................................................................................................... 79 
3.5 Uncertainties in the estimates of the surface emissions.................................. 88 
3.6 Conclusions........................................................................................................... 89 

4 Seasonal variability in the global dust cycle................................................91 
4.1 Experimental setup .............................................................................................. 92 
4.2 Results .................................................................................................................... 92 
4.2.1 Simulated dust loading:  Comparison with TOMS.......................................... 94 



Chapter 1: Introduction 

 6 

4.2.2 Simulated surface concentrations: Comparison with measurements............ 99 
4.3 Determining the cause of seasonality in the dust cycle................................. 106 
4.3.1 Seasonality in surface emissions....................................................................... 106 
4.3.2 Seasonality in the atmospheric dust loading................................................... 121 
4.3.3 Seasonality in dust concentrations................................................................... 123 
4.4 Conclusions ........................................................................................................ 126 

5 Inter-annual variability in the global dust cycle........................................130 
5.1 Experimental setup............................................................................................ 131 
5.2 Vegetation constraints on North African dust emissions ............................ 132 
5.3 Comparison between simulated surface concentrations and observations 137 
5.4 Vegetation constraints on Asian dust emissions ........................................... 139 
5.4.1 Sensitivity studies ............................................................................................... 145 
5.5 Discussion........................................................................................................... 147 

6 Conclusions................................................................................................150 
6.1 Summary of findings ......................................................................................... 150 
6.2 Future Work ....................................................................................................... 153 

Appendix.............................................................................................................157 

Bibliography........................................................................................................160 



Chapter 1: Introduction 

 7 

 

1 Introduction 

Changes in the extent of arid and semi-arid regions will have a significant impact of the 

quantity of mineral dust in the atmosphere.  The expansion and contraction of these regions 

is largely controlled by changes in vegetation cover. Because of this, it is important to 

understand how vegetation cover at the boundaries of these regions will respond to the 

climate. Understanding this process will help to explain trends in dust concentrations in the 

past decades and provide insight into how desert regions will change in the future under 

elevated CO2.  

  

This introduction describes the dust cycle and the various ways in which mineral dust 

interacts with the Earth’s system.  This is followed by a summary of observational studies 

which show that there is seasonal and inter-annual variability in the dust cycle. Recent 

developments in dust cycle modelling are discussed and the need for a new dust cycle 

model is highlighted. Finally, the thesis plan and the specific aims of this work are 

presented.  

 

1.1 The dust cycle   

The movement of dust in the atmosphere has three phases; dust emission, transport and 

removal. Dust emission occurs when dry sparsely vegetated soil is exposed to the surface 

on which an abundance of particles are available for entrainment. These particles are 

formed by glacial grinding, frost weathering, aeolian abrasion by saltating particles, 

chemical weathering of rocks and abrasion in rivers and lakes (Pye 1987).   

 

Particles with diameter in the range of 60-2000µm are mobilised by saltation (Marticorena 

and Bergametti 1995). Saltation occurs when wind speeds are strong enough to overcome 

the forces of gravity and inter-particle cohesion. The particles are lifted just above the 

surface but fall back to the surface because of the force of gravity.  

 

Measurements from wind tunnel experiments show that the relationship between the 

saltating dust flux is proportional to the cube of the wind speed (u
3
)
 
(Bagnold 1941; Shao 

and Raupach 1993) or proportional to u
4  
(Gillette and Passi 1988) above a threshold value.  
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Data obtained from wind tunnel experiments shows that either relationship may hold true 

(Gillette 1977). 

 

The critical wind speed required to move a particle at rest is called the threshold friction 

velocity (ut). The threshold friction velocity is a function of various properties of the 

surface and of the particle size.  Experimental studies have shown that ut increases as the 

particles size increases because more energy is required to overcome the force of gravity to 

mobilise a heavy particle. The same experiment also shows that ut increases for very small 

particles because these are bound together by strong inter-particle cohesion forces 

(Bagnold 1941; Iversen et al. 1976; Iversen and White 1982).  Figure 1-1 shows how ut 

increases for very small and very large particles when ut is calculated using the empirical 

relationship derived by Iversen and White (1982).  This empirical relationship has been 

derived by measuring ut for different particle diameters in a wind tunnel. The model 

developed in this thesis uses this relationship to calculate the ut and is based on a previous 

model developed by Tegen et al., (2002).     
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Figure 1-1 Threshold friction velocity as a function of particle size determined from 

semi-empirical relationship described by (Iversen and White 1982).   

 

 

Another surface property that influences the ut is the presence of non erodible materials 

such as vegetation cover and rocks on the surface. These obstacles reduce wind speed 

momentum which means a higher ut is required to move a particle. The decrease in wind 
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speed caused by the presence of non erodible obstacles on the surface is calculated using 

the roughness length. The model developed in this work uses fixed roughness length of 

0.01cm which is typical of a level desert (Seinfeld 1998). Roughness length can also be 

derived from remote sensing measurements (Prigent et al. 2005).   

 

The ut is also affected by soil moisture.  Soil moisture increases the cohesion forces 

between the soil grains which increases the ut and makes the soil more difficult to erode 

(Fecan et al. 1999).   

 

The area available for dust emission is influenced by the presence of vegetation cover 

which protects the surface from erosion. Vegetation cover also reduces the erodibility of 

the soil because the root system binds the soil together. At high latitudes the presence of 

snow cover may reduce the area exposed to erosion.   

 

Once saltation has commenced, a fraction of the saltating dust flux is converted into a 

vertical flux. Wind tunnel experiments have shown that the vertical flux is related to the 

horizontal flux by a constant value α  (Shao and Raupach 1993). α is called the 

sandblasting mass efficiency. This is measure of how efficiently saltating particles are able 

to bombard the surface to release large quantities of fine grain material. Theoretically these 

values depend on the kinetic energy of the saltating particles and on the resistance of the 

surface to release fine material. However, dust cycle models often use experimentally 

derived values for α for different soil types (Marticorena et al. 1997).  

 

Dust is lifted vertically into the atmosphere on regional scales by small scale convective 

disturbances known as dust devils or by intense large sand storms known as haboobs. Dust 

devils are rotating updrafts that develop over heated surfaces. Dust devils have diameters 

in the range of tens of meters and can persist for minutes (Goudie 2006).  Haboobs are 

large dust storms that are generated when a cold front associated with thunderstorm 

activity moves along the surface. The cold air contains high wind speeds and a large 

vertical shear which entrains dust into the atmosphere. Haboobs can reach heights of 

approximately 1000m and last for several hours (Goudie 2006).   

 

The inter-continental transport of dust is caused when dust laden air reaches high altitudes 

where it is then transported by the prevailing winds. Dust reaches high altitudes when a 

deep thermally mixed layer is formed by heating during the day or alternatively when a 
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cold front is present. In the Sahara the presence of a deep thermally mixed layer lifts dust 

to altitudes of 3-5km (Prospero 1981).  It is then transported westwards across the Atlantic 

by easterly waves (Jones et al., 2003,2004). Measurements show that Saharan dust reaches 

the Caribbean (Prospero and Nees 1986).  In Asia the lifting of dust to high altitudes is 

associated with the passage of cold fronts emerging from Siberia.  

 

Dust is removed from the atmosphere by wet and dry deposition.  Dry deposition is the 

removal of particles by gravity and is the dominant removal mechanism for large particles 

close to the source regions. Dry deposition is a two step process comprising of 

gravitational settling and turbulent mixing.  Gravitational settling is the movement of a 

particle under gravity to the quasi sub laminar layer. This is a layer of static air just above 

the surface. As a particle falls it experiences an aerodynamic resistance in the opposite 

direction to the particle motion. An additional resistance is experienced as the particle 

crosses the quasi sub laminar layer to the surface.   

 

Wet deposition is the removal of dust by precipitation such as rainfall, fog or snow. There 

are two types of wet deposition; below cloud scavenging and in-cloud scavenging. Below 

cloud scavenging occurs when a falling droplet collides with dust to remove it. In-cloud 

scavenging occurs when water vapour condenses on a dust particle. The particle then 

grows to a critical size and falls out of the atmosphere as precipitation.  

 

The lifetime of the dust in the atmosphere is particle size dependent. Pye (1987) showed 

that the particle size distribution decreases with the distance from the source regions. 

Desert dust is dominated by particles with diameter from 0.1 to 10µm with a mean 

diameter of approximately 2µm which can reside in the atmosphere for several weeks 

(Jickells et al. 2005).   

 

1.2 Dust-climate interactions 

Mineral dust interacts with the climate by modifying the Earth’s radiation budget and by 

transporting nutrients to the terrestrial and marine ecosystems.   This section describes the 

various ways in which dust interacts with the Earth’s system.   
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1.2.1 Direct radiative forcing  

Mineral dust interacts with the Earth’s radiation budget by scattering or absorbing 

incoming short wave solar radiation. Dust also has an impact on long wave radiation by 

absorbing radiation emitted from the surface. The change in net irradiance between the 

incoming and outgoing solar radiation is called direct radiative forcing. Direct radiative 

forcing is expressed in Wm
-2
 where a negative forcing indicates a cooling of the 

atmosphere and a positive forcing indicates a warming.  

 

The way in which shortwave radiation interacts with an aerosol depends on the size of the 

particle (Dp) relative to the wavelength of the incident radiation (λ). Rayleigh scattering 

occurs if π Dp/ λ << 1. In the visible range, Rayleigh scattering affects small particles with 

diameter <=1µm (Seinfeld 1998). The pattern of the scattered light is symmetrical in the 

forward and backward direction.  

 

Mie scattering occurs when π Dp/ λ ≈ 1. The pattern of the scattered light is asymmetrical 

in the forward and backward direction. Mie theory provides a theoretical solution for the 

scattering of light assuming the particle has a spherical shape. The magnitude and direction 

of the scattering or absorption of radiation is calculated using a number of optical 

properties associated with particle.  

 

The most important of these optical properties are the refractive index, the single scattering 

albedo and the asymmetry parameter.  The refractive index provides a measure of how 

much radiation is scattered or absorbed by a particle. The single scattering albedo 

quantifies the scattering efficiency to the total light extinction by scattering and absorption. 

The asymmetry parameter describes the angle of the scattered radiation relative to the 

incident radiation. 

 

Mineral aerosol can contain a wide variety of mixtures that may include many constituents, 

including quartz, iron oxides, various clays (mainly kaolinite, illite, and montmorillonite), 

calcite, gypsum, hematite. The relative abundance of each constituent will depend on the 

origin of the dust and whether it has changed during transport by interacting with other 

atmospheric constituents. These minerals vary in their particle sizes, shapes, density, 
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solubility, and chemical reactivity, hence their optical properties. As a consequence this 

will impact the way they attenuate light.  

 

Durant et al., (2009) showed that uncertainties in the particle size distribution, 

composition, shape and the way in which dust particles are aggregated together, 

contributes to the uncertainty in the radiative forcing. For example it was shown that the 

difference between using laboratory and remote sensing observations for the single 

scattering albedo reverses the sign of the direct forcing by dust.  

 

The magnitude of the radiative forcing can be estimated from measurements. Garcia et al., 

(2009) estimated from measurements of shortwave radiation at the surface that the 

shortwave radiative forcing was 1.55 Wm
-2
 in the Saharan region and -0.95 Wm

-2
 in Asia. 

The radiative forcing was calculated by taking the difference between the shortwave 

radiation at the surface with and without aerosols present. The radiation in an aerosol free 

atmosphere was calculated using a radiative transfer model. Mineral dust events were 

indentified using Total Ozone Mapping Spectrometer (TOMS) aerosol index and the 

aerosol loading was obtained from optical depth measurements from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor.  

 

Aircraft measurements have shown that the shortwave radiative forcing by Saharan dust 

over the coast of West Africa is as large as -130Wm
-2 
(Haywood et al. 2003). This was 

calculated by taking the difference between the upward irradiance with and without 

aerosols. The upward irradiance with aerosol present was measured using an instrument 

that measures broadband radiation, fitted to the underside of an aircraft and facing 

downwards. The upwards irradiance without aerosols was calculated using a radiative 

transfer model.  

 

Dust can absorb long wave radiation by absorbing radiation emitted from the surface. This 

has a heating effect on the atmosphere.  The magnitude of the heating is dependent on the 

optical properties and vertical profile of the dust. Model estimates of the net direct 

radiative (long wave + short wave) forcing by mineral dust have been reported to be in the 

range of -0.56 to +1.0Wm
-2 
(Forster 2007). This estimate has been based on a number of 

modelling studies which assume an anthropogenic contribution of 0-20%. The estimate has 

been assigned an uncertainty of ± 0.2Wm
-2 
reflecting uncertainty in dust emissions and the 

contribution from anthropogenic sources.   
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1.2.2 Indirect radiative forcing and cloud formation   

Dust indirectly affects the Earth’s radiation balance by modifying cloud formation. Dust 

particles act as cloud condensation nuclei. These are sites upon which water vapour 

condenses to produce cloud droplets. If there is an increase in the number of cloud 

condensation nuclei but the amount of water vapour remains fixed, then cloud droplets will 

grow to smaller sizes.  Smaller cloud droplets will enhance cloud reflectivity by scattering 

more incoming radiation. This has a cooling effect on the climate and is called the 

Twomey effect (Twomey 1974). 

 

In addition to enhancing cloud reflectivity, the effect of smaller droplets in a cloud is that 

less particles grow to a critical size for precipitation, thus suppressing rainfall. Because of 

their smaller size, the droplets are less likely to collide with each other when they do 

precipitate. It has been proposed that this can form a positive desertification feedback loop 

when the following sequence occurs: dust aerosol increases, the effective radius of cloud 

droplet decreases, precipitation decreases and arid climate is strengthened (Han et al. 

2008).   

 

There is evidence that Saharan dust commonly acts as cloud condensation nuclei over the 

North Atlantic (Twohy et al., 2009). In that study they collected and analysed the residual 

nuclei of small cloud droplets over the eastern Atlantic and showed that Saharan dust was 

present.  

 

Dust is believed to have effects on high level cloud formation by acting as nuclei for 

triggering ice formation. The presence of dust enables water droplets freeze at higher 

temperatures than normal. Pure water can become super cooled to temperatures near -40 

°C. However, it has been shown that the presence of Saharan dust in clouds over Florida is 

causing water to freeze at temperatures between -5 °C and -8 °C (Toon 2003).  When the 

ice crystals fall they grow by colliding with water droplets at lower altitudes which induces 

rainfall. Overall there may be two mechanisms at work such that dust reduces precipitation 

in low-level clouds and enhances precipitation in high-altitude clouds.   

 

A study by Rosenfeld et al., (2001) investigated the effects of Saharan dust on cloud 

formation. They analysed remote sensing retrievals of cloud effective droplet radius in 
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clouds formed in dust laden and dust free conditions.  It was found that clouds formed in 

dust laden conditions has smaller radii, had little coalescence (when small droplets collide 

to form larger droplets), and did not precipitate.  In order for these clouds to precipitate 

they had to grow vertically to heights greater than the -12
o
C isotherm level.  This was 

confirmed by aircraft measurements taken at the same time. Drizzle and warm rain was 

measured in the dust free clouds, while there was little or no precipitation in the dust laden 

clouds.  

 

Mahowald and Kiehl (2003) showed that there was a positive correlation (0.2-0.5) between 

mineral dust concentrations at Barbados and remote sensing derived low cloud amount 

over the coast of North Africa over a period of 16 years. Barbados dust measurements were 

used as a proxy for dust loading over the North Atlantic (Mahowald et al., 2003). It was 

suggested that the correlation between low cloud amount and dust loading over the North 

Atlantic was because dust acted as cloud condensation nuclei which increased the lifetime 

of the cloud by reducing precipitation.  

 

1.2.3 Biogeochemical cycles 

There is evidence to suggest that dust provides nutrients such as nitrogen and phosphorus 

to the marine ecosystem (Herut et al. 1999). In the open ocean, dust deposition from the 

atmosphere plays an important role in supplying iron to the ocean (Jickells et al. 2005). It 

has been hypothesised that during glacial times, iron-rich dust from Patagonia deposited 

into the Southern Ocean caused an increase in plankton productivity which increased the 

drawdown of CO2 from the atmosphere to the ocean, resulting in a cooler climate (Martin 

1990). The Southern Ocean is a high-nutrient, low-chlorophyll (HNLC)
 
region which is 

limited in iron.  Open ocean experiments have shown that iron deposited into this region 

does increase carbon fixation in the surface waters (Boyd et al. 2000; Tsuda et al. 2003; 

Coale et al. 2004).  In addition to this, laboratory studies have verified that phytoplankton 

productivity increase when iron is added to sea water [Martin and Fitzwater 1988]. The 

iron fertilisation hypothesis remains controversial, however, because experiments have not 

confirmed whether iron-fertilisation results in a net drawdown of CO2 (Buesseler et al. 

2004).  

 

It has been suggested that iron needs to be acidified prior to its deposition to the ocean to 

make it biologically available (Meskhidze et al. 2005; Meskhidze et al. 2007). This is 
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because iron in dust is usually in mineral form which has low solubility in sea water.  

Meskhidze et al. (2005) tracked the movement of two dust plumes from the Gobi Desert to 

the Pacific Ocean. One plume caused an enhancement in plankton productivity in the 

Pacific, but the other did not. The plume that did increase plankton productivity had been 

acidified by sulphur dioxide caused by pollution in China. They concluded that this 

converted the iron into a more soluble form.  

 

Swap et al., (1992) showed that Saharan dust provides nutrients to the Amazon Basin. This 

is particularly import for this region as nutrients are leached out of the soil by heavy 

rainfall.  It has estimated that of the 240Mt of dust that is transported annually from Africa, 

50Mt reaches the Amazon every year providing essential micronutrients (Kaufman et al. 

2005).  This links the ecosystem of the Amazon rain forest to the ecosystem of the 

Sahara/Sahel region over large distances by the mechanism of dust transport.  

 

There is evidence that dust provides nutrients to the Cape Floristic region of south-western 

South Africa (Soderberg and Compton 2007). The region is described as a ‘biodiversity hot 

spot’ and contains an abundance of Fynbos (shrubland) vegetation even though the 

bedrock is nutrient poor. They showed that dust deposition from the interior of the 

continent and from anthropogenic sources provided the nutrients necessary for the 

ecosystem to flourish. Dust originating from the Sahara has also been found to contribute 

to soil development in North East Gran Canaria (Menendez et al. 2007)  

 

 

1.2.4 Dust and tropical storm formation    

A correlation has been found between tropical cyclone activity in the North Atlantic and 

the dust transported from West Africa (Evan et al. 2006). They found using TOMS aerosol 

index, that dust loading over the North Atlantic was anti-correlated with tropical storm 

occurrences. Dust from North Africa is transported across the Atlantic in the Saharan air 

layer. This is a stable layer of hot dry air that moves over the marine boundary layer and 

allows dust to be transported for long distances.  It was suggested that when the warm dry 

dusty air is introduced into a storm it disrupts the convective formation of the tropical 

cyclone vortex.   

 

Wu et al., (2006) analysed the effect of the Saharan air layer on the formation of  

Hurricane Isabel in 2003 using a mesoscale atmospheric circulation model and remote 
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sensing temperature and humidity profiles from the Atmospheric Infrared Sounder (on 

board the Aqua satellite). It was found that the presence of the Saharan air layer may have 

delayed the formation of the hurricane Isabel.  

 

1.2.5 Carbon dioxide fertilisation  

Changes in vegetation cover caused by increased levels of atmospheric CO2 may have an 

impact on future dust source areas.  The increase in plant growth caused by exposure to 

elevated levels of CO2 is called CO2 fertilisation. Plants respond in several ways to 

increased levels of CO2. Laboratory studies have shown that when a plant is exposed to 

elevated levels of CO2, the stomata become smaller (Morison, 1985). This is because the 

plant can take up all the CO2 it requires while loosing less water.  This increases the water 

use efficiency in the plant which enhances it potential to survive under arid conditions.   

 

Desert ecosystems are believed to be very responsive to elevated levels of CO2.  Smith et 

al., (2002) studied the response of a desert ecosystem to elevated CO2. They exposed a 

sample of the Mojave Desert to 550ppm of CO2 using a free-air CO2 enrichment facility 

(FACE). They observed increased plant productivity. In a year with high rainfall, the plant 

productivity of a dominant perennial shrub doubled. In addition to this, they found an 

increase in the productivity of invasive species of grass in response to elevated CO2. This 

has implications for dust source areas in a future world with elevated CO2.  

 

The impact CO2 fertilisation on dust source areas has been studied using the BIOME4 

model (Mahowald and Luo 2003; Mahowald 2006; Mahowald 2007). These studies predict 

that dust emissions will increase in the future if the CO2 fertilisation effect is included. 

This is because the increase in water use efficiency enhances the ability of vegetation cover 

to survive under arid conditions. When CO2 fertilisation is excluded a decrease in dust 

emissions are predicted as vegetation is unable to adapt to the increased aridity.  

 

1.3 Temporal variability in the dust cycle 

Atmospheric dust loadings are highly variable in time. On daily time scales visibility data 

shows that dust storms are more frequent during the day than at night (N'tchayi Mbourou 

1997). This is caused by the heating of the surface during the day which causes convective 

disturbances, resulting in higher wind speeds. A study by Schepanski et al., (2009) showed 
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that that 65% of dust source activation occurs between 0600-0900 UTC. This was found by 

analysing fifteen-minute Meteosat Second Generation (MSG) retrievals of dust over the 

Sahara and the Sahel.   

 

On millennial time scales times scales, dust records from the EPICA ice core shows that 

over the last 800,000 years there has been a 2-25 fold increase in dust deposition rates 

during glacial periods compared to inter-glacial periods (Lambert et al. 2008).  

 

This thesis is concerned with seasonal and inter-annual variability in atmospheric dust for 

the modern climate. The next section describes the seasonal and inter-annual variability in 

the dust cycle from observational studies for the major dust producing regions.    

  

1.3.1 Seasonal variability  

North Africa  

A seasonal cycle in North African dust loading has been observed from space using 

Advanced Very High Resolution Radiometry (AVHRR) data (Evan et al. 2006), MODIS 

data (Kaufman et al. 2005) and TOMS aerosol Index (Prospero et al. 2002). The 

observations show that atmospheric dust loading over North Africa has a strong seasonal 

cycle which has a maximum in the summer (JJA) and a minimum in the winter (DJF).  

These studies show that there is a change in the transport pathway between JJA and DJF 

due to a shift in the inter-tropical convergence zone (ITCZ).  

 

The ITCZ is the point near the equator at which the dry north-easterly trade winds from the 

Northern Hemisphere converge with the humid south-easterly trade winds from the 

Southern Hemisphere. The position of the ITCZ varies throughout the year.  In JJA the 

ITCZ shifts northwards and dust is transported towards the Caribbean while in DJF ITCZ 

shifts northwards and dust is transported towards South America. The increase in North 

African dust transported to the Caribbean during JJA has been observed from 

measurements of dust concentrations at Barbados. The measurements show that dust 

concentrations are 10 times higher in JJA than in DJF (Prospero and Nees 1986).  

 

Arabia 

Measurements show that maximum dust activity in the Arabian Peninsula occurs in JJA 

(Kambezidis and Kaskaouti 2008). They analysed aerosol optical depth from the 
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AERONET network at a site in Saudi Arabia that was dominated by desert aerosol. The 

highest aerosol optical depths were measured in JJA.    

 

Asia 

Observations of dust storms in Asia show that maximum activity occurs in spring, caused 

by an increase in wind speeds linked to cold fronts emerging from Siberia (Littmann 1991; 

Goudie and Middleton 1992; Wang et al. 2004).  Remote sensing observations indicate that 

vegetation cover may play a role in controlling the seasonal cycle in dust emissions from 

Asia (Zou and Zhai 2004). In that study it was found that a decrease in NDVI over 

Northern China and in Inner Mongolia corresponded with an increase in dust storm events. 

The spring peak in dust storms was attributed to a combination of factors. Firstly, the 

NDVI in spring was low, indicating that vegetation cover was sparse at this time of year. 

This was combined with an increase in synoptic systems emerging from Siberia which 

caused an increase in the frequency of strong winds. Finally, the increase in temperature 

between winter and spring melted the frozen soil and snow cover. It was suggested that 

together these factors contributed to the observed increase in dust storms in spring. The 

impact of vegetation cover on the seasonality in dust emissions will be investigated in 

further detail in chapter 4.   

 

North America  

Analysis of visibility measurements and total suspended particulate (TSP) concentrations 

at metrological stations in Tennessee in the northern US show that the peak in dust activity 

occurs in the spring (Orgill and Sehmel 1976). The spring maximum was related to an 

increase in wind speeds >7ms
-1
 which was associated with the spring cyclonic and 

convective storm activity. Stout (2001) analysed particulate concentrations at sites in the 

Southern High Plains of North America and found that the maximum in spring was not 

only related to wind speeds, but that other factors such as soil moisture and the seasonal 

growth of cotton also played a role in determining the seasonality. In the southern US 

(Mexico and California) remote sensing measurements from TOMS aerosol index show 

that the seasonal cycle begins in spring (April–May) and peaks in June-July and ends in 

August-September (Prospero et al. 2002).  

 

Australia  

TOMS aerosol index data shows that dust loading over Australia reaches a maximum 

between December-February (the Austral summer) and a minimum in May (Prospero et al. 

2002). McTainsh and Pitblado (1987) analysed dust storm frequencies from meteorological 
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stations in Australia and showed that in the northern region (New South Wales and 

Queensland) the peak activity occurs in the spring and early summer while in the southern 

region (Victoria and New south Wales) the peak occurs in the summer. This seasonality 

was related to the difference in rainfall regimes in the north and the south of Australia.  In 

both areas the most frequent dust storms occurred during the months with the highest wind 

speeds.   

 

South Africa  

Remote sensing observations show that dust activity in South Africa is centred over two 

regions; the Etosha Pan in northern Namibia which is a salt pan and the Makgadikgadi 

depression and Pans in Botswana which is a sandy alkaline clay pan (Prospero et al. 2002).  

During June-July these pans dry out and dust deflation occurs. An increase in dust activity 

begins from June-July and reaches a maximum between August and October.    

 

South America  

There is conflicting information about the seasonal cycle of dust activity in South Africa. 

Remote sensing data from the TOMS detector shows there is dust activity over Patagonia 

which has a maximum in the Southern Hemisphere winter (Prospero et al. 2002). In 

contrast, data from the MODIS sensor shows that Patagonia is not an active dust source 

(Kaufman et. al. 2002). Measurements of the dust deposition flux at sites in the Patagonian 

desert show that in general the maximum deposition flux occurs in NDJ when wind speeds 

are highest and precipitation is low (Gaiero et al. 2003).   

 

These observational studies summarised in this section have highlighted the fact the 

seasonality in the dust cycle is regionally dependent and may involve a combination a 

number of climatic factors. In chapter 4 the new dust model developed in this work is used 

to investigate which factors control the seasonality in the dust cycle in individual dust 

regions.  

 

1.3.2 Decadal variability  

There are very few observations of dust in the atmosphere that span decades.  One of the 

longest continuous measurements of dust concentrations have been made at Barbados since 

1965 (Prospero and Nees 1986).  This dataset has been useful to study the inter-annual 

variability in North African dust emissions. The measurements at Barbados show that there 
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was a four fold increase in dust concentrations during the 1980s relative to the 1960s. This 

variability has been correlated with rainfall deficits in sub-Saharan Africa in the previous 

year (Prospero and Nees 1986; Prospero and Lamb 2003).  

 

Remote sensing data has provided a useful tool for observing inter-annual variability in the 

atmospheric dust loading. North Africa is the worlds largest dust source; therefore, many 

studies have focused in this region.  

 

Dust loading over North Africa and the North Atlantic has been observed from space using 

TOMS and Meteosat images (Chiapello and Moulin 2002). They showed by analysing 18 

years of dust optical thickness observations that a large amount of inter-annual variability 

occurred in winter (December–March).  There were years (e.g. 1986) where winter dust 

was almost absent and years (e.g. 1989) where winter dust was almost as high as in 

summer.  

 

Satellite observations have related the variability in North African dust to the North 

Atlantic Oscillation (NAO) (Moulin et al. 1997; Chiapello and Moulin 2002; Chiapello et 

al. 2005; Evan et al. 2006). The NAO is a large-scale fluctuation in atmospheric pressure 

between the sub-tropical high pressure system located near the Azores in the Atlantic 

Ocean and the sub-polar low pressure system near Iceland (Hurrell 1995). The permanent 

high-pressure system over the Azores and the permanent low-pressure system over Iceland 

control the direction and strength of westerly winds across the North Atlantic. The relative 

strengths of these pressure systems vary from year to year. The variation is known as the 

NAO and is measured by taking the pressure difference between these two locations. If 

there is a large difference in the pressure between the two locations the NAO index is said 

to be high. This causes an increase in westerly winds over the Atlantic which results in 

cooler and wetter conditions over Europe and drier that normal conditions over North 

Africa.  This leads to enhanced dust export due to the lack of precipitation. In contrast, if 

the pressure difference is small, the NAO index is small and westerly winds over the North 

Atlantic are suppressed.  This leads to cold dry conditions over Europe and an increase in 

precipitation over North Africa. More precipitation results in more dust removal by wet 

deposition and less dust emissions due to increased soil moisture.    

 

Measurements of visibility used as a proxy for dust storm activity have been made at 

meteorological stations since the 1900s (Mahowald et al. 2007). This type of data, 
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although, semi-qualitative in nature, has been useful to observe long term changes in dust 

storms frequencies.  Dust storm frequencies in Asia have declined since the 1950s (Zhao 

2004; Wang et al. 2006; Guo and Xie 2008; Kim 2008).  Several reasons have been put 

forward to explain this downward trend. Zou and Zhai (2004) studied dust storm activity 

over Northern China and proposed that changes in vegetation cover was responsible for the 

downward trend in dust storm activity. Other studies has have related the decrease in dust 

storm frequency to a decrease in local wind speeds (Wang et al. 2006), a decrease in 

tropical cyclone activity (Qian et al. 2002) or climatic indices such as the North Atlantic 

Oscillation, the Pacific Decadal Oscillation or El Nino (Hara et al. 2006).   

 

1.4 Advancements in dust cycle modelling  

Modelling the dust cycle is a relatively new science which began in the early 1990s. Since 

then several advancements have been made in dust cycle modelling. However, a large 

discrepancy still exists in estimates of the annual mean emissions predicted by different 

models. Ranges from 805 to 2600 Tgyr
1
 have been reported in the literature (Ginoux et al. 

2001; Tegen et al. 2002; Zender et al. 2003a; Grini et al. 2005; Cakmur et al. 2006). The 

variation in the model estimates may arise from the differences in the way models 

parameterise the different physical processes in the dust cycle. Also the datasets used to 

drive the models and describe the properties of the land surface are different between 

models. Models are run over different time periods so uncertainty in the estimates of the 

annual mean emissions is caused by inter-annual variability in surface emissions.  

  

This section discusses the way in which several key processes have been treated in dust 

cycle models. These processes are; the treatment of vegetation cover, wind speed 

parameterisation, preferential dust source regions and dust transport and removal 

processes.  

 

A dust model inter-comparison table has been compiled.  Table 1.5-1  shows a selection of 

some of the models developed to simulate the modern dust cycle listed in chronological 

order, with a brief description of how each model treats some of the key process in the dust 

cycle.  The majority of the models are off-line. This means that they are forced by external 

metrological fields and the dust has no radiative feedback on the system. The exception to 

this are the models of Tegen and Miller (1998), Woodward (2001), Cakmur et al. (2006) 

and Yue et al. (2009) which are on-line. The estimated annual mean surface emissions 
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predicted by the models are included in Table 5.1-1.   Each model considers a different 

particle size range and some of the dust loadings are calibrated to match observations.  

 

1.4.1 Treatment of wind speed dependency in dust models 

Dust models have treated the wind speed dependency in different ways. Joussaume (1990) 

simply assumed that the dust flux was linearly proportional to the wind speed. The 

parameterisation did not include a threshold wind speed for dust emissions. Subsequent 

models (Tegen and Fung 1994; Tegen and Miller 1998; Mahowald et al. 1999) assumed 

that the dust flux was related to the cube of the wind speed above a threshold value.  The 

threshold values were determined from experimental studies.  

 

It can be seen from  that the most recent models parameterise the relationship between the 

dust flux and the wind speeds using the scheme developed by Marticorena and Bergametti 

(1995).   This scheme relates the dust flux to the cube of the wind speed above a threshold 

value where the threshold wind speed is calculated as a function of surface roughness and 

the particle size.   

 

Dust models treat surface roughness in different ways. Cakmur et al., (2006) used data 

from the European Remote Sensing (ESR) microwave scatterometer to identify regions 

with low surface roughness. Other models use a fixed value for the roughness length. Lunt 

and Values (2002) used a fixed roughness length of 1.68cm. This value was used because 

it gave a good match with the roughness length of the HadAM3 model which produced the 

wind speeds used to drive their dust model. Zender et al. (2003a) used a globally fixed 

surface roughness value derived from wind tunnel experiments.  

 

Some models have included the effect of soil moisture on the threshold wind speed by 

using empirically derived relationships to account for the fact that an increase in soil 

moisture increases the threshold wind speeds (Ginoux et al. 2001; Ginoux et al. 2004; 

Tanaka and Chiba 2006)  

 

Several models have parameterised the effect of sub-grid scale gustiness on the dust flux.  

These are small scale convective disturbances which cause short bursts of high wind speed 

in which the ut may be exceeded. Because there is a cubic relationship between the dust 
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flux and the wind speeds, short periods of high wind speed may have a large impact on the 

total dust emissions.  

 

Models have treated gustiness in different ways. Grini et a. (2005) applied a probability 

density function to the wind speed and found that excluding gustiness in the model 

produced much lower emissions. Cakmur et al., (2006) parameterised sub-grid scale 

gustiness by constructing a probability distribution of wind speeds within each grid box 

that depends upon the speed explicitly calculated by a GCM and the magnitude of 

fluctuations about this speed. It was found that that including gustiness significantly 

improved the estimate of the dust loading compared to observations. Lunt and Valdes 

(2002) included two types of gustiness, convective gust and eddies gusts. The convective 

gusts were calculated using an empirical relationship derived from measurements of 

gustiness and convective precipitation (Redelsperger et al. 2000).  Gustiness due to eddies 

caused by heating of the surface were calculated as a function of the surface temperature.  

 

1.4.2 Treatment of transport and removal processes in dust models 

Table 1.5-1 lists the chemical transport models used by dust cycle models to transport dust 

in the atmosphere. It can be seen that the horizontal and vertical resolution of the chemical 

transport models has improved for later models allowing a better representation of the 

horizontal and vertical transport.   

 

Each of the dust cycle models listed in  have parameterised the process of dust removal by 

dry deposition which consists of gravitational settling and turbulent mixing. Dust removal 

by sub-cloud scavenging is included in all the models because it is relatively simple to 

parameterise, while only two have included in-cloud scavenging (Zender et al. 2003a; 

Tanaka and Chiba 2006).  A fixed scavenging coefficient has been used in the majority of 

models (Tegen and Fung 1994; Tegen and Miller 1998; Mahowald et al. 1999; Lunt and 

Valdes 2002; Mahowald et al. 2002; Tegen et al. 2002; Cakmur et al. 2006).  

 

1.4.3 Treatment of preferential dust source regions  

Preferential dust source regions are areas that have accumulated alluvium sediment for 

example dried out palaeo lakes and river beds. They are believed to act as dust emitting 

'hot spots'. The Bodele depression north east of Lake Chad is one such example of a dust 
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emitting 'hot spot' (Prospero et al. 2002).  Because these regions occur in topographic 

depressions some dust models have used digital elevation maps to identify preferential dust 

source regions. Ginoux et al., (2001) and Zender at al., (2003a) have represented 

preferential dust source regions by relating the difference in height of two grid points in 

relation to the local mean surface elevation.  

 

Alternatively, Tegen et al., (2002) used a high resolution water routing and storage model 

HYDRA (Coe 1998) to calculate areas in which palaeolake beds would have existed in the 

past. HYDRA uses a land surface topography map to calculate the extent of lakes as a 

function of precipitation, run off and surface evaporation. The HYDRA model is run using 

unlimited precipitation and the difference between simulated lakes and lakes present today 

indicates places where lakes would have existed in the past under a wetter climate.  

 

Remote sensing reflectivity data has also been used to detect preferential dust source 

regions. Reflectivity data from the MODIS sensor has been used to determine regions of 

high erodibility (Grini et al. 2005).  

 

1.4.4 Treatment of vegetation cover in dust models 

One of the earliest dust cycle models developed did not explicitly represent vegetation 

cover (Joussaume 1990). It was simply assumed that dust emissions occurred when the soil 

moisture content was low. At that time it was believed that vegetation cover did not 

constrain dust emissions.  

 

Subsequent models (Genthon 1992; Tegen and Fung 1994; Tegen and Fung 1995; 

Andersen and Genthon 1996; Andersen et al. 1998; Tegen and Miller 1998) used the 

Matthews vegetation map (Matthews 1983) to identify desert or sparsely vegetated regions. 

This was a static global map of vegetation types compiled from existing maps of 

vegetation and remote sensing data on a 0.5 x 0.5 degree spatial resolution. Using this map 

it was possible to prescribe biomes such as desert, grassland and scrublands as dust 

sources.  

 

There were two limitations to this approach. The first was that it did not account of the fact 

that the fractional coverage of bare soil may vary for different biomes.  The second was it 

did not account for seasonal and inter-annual growth in vegetation cover which could 
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potentially cause an expansion and contraction of dust source regions.  Therefore, this type 

of model could not be used to simulate the seasonal or inter-annual variability in the dust 

cycle caused by changes in vegetation cover. Furthermore, these models could not be used 

to simulate the dust cycle in the past or in the future.  

 

(Mahowald et al. 1999) first included model derived vegetation cover in a dust cycle 

model. The authors used BIOME3, the Equilibrium Biogeography-Biogeochemistry model 

(Haxeltine and Prentice, 1996) to simulate the distribution of vegetation types on the 

surface. This model predicted the distribution of vegetation cover in its equilibrium state 

for a given climate and atmospheric CO2 concentration. Dust source regions were related 

to the maximum leaf area index (LAI) predicted by BIOME3, when the LAI was below a 

defined threshold value.  

 

This was a significant development because it meant that the model could be used to 

simulate the dust cycle in the past or the future.  Indeed in that study, the model was used 

to investigate the cause of increased in dust deposition rates during the Last Glacial 

Maximum which have been observed in ice core records.  A similar approach was taken by 

Lunt and Valdes (2002) and Mahowald et al., (2002) who used BIOME4, the successor of 

BIOME3, to calculate dust source areas using the annual mean LAI. The limitation of these 

models was that they simulated vegetation cover in its equilibrium state with the climate 

and did not include vegetation phenology.  

 

At the same time a new type of dust cycle model was being developed which did include 

vegetation phenology. Tegen et al, (2002) included vegetation phenology by combining 

remote sensing NDVI measurements (Braswell et al. 1997) with the BIOME4 model. The 

BIOME4 model was used to identify potential biomes that emit dust. Remote sensing 

NDVI was converted into FPAR using an empirical relationship (Knorr and Heimann 

1995) and the FPAR was used as a proxy for the density of vegetation cover.  It was 

assumed that in grass dominated biomes the dust source varied linearly with the monthly 

FPAR below a threshold value. Shrub dominated biomes were assumed to emit dust all 

year around if the FPAR was below a threshold value.  This approach made it possible to 

predict the seasonal changes in the dust source areas due to changes in vegetation cover. It 

was found that including seasonal changes in vegetation cover produced better estimates of 

dust emission from Asia.  
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One of the limitations of the Tegen et al, (2002) model was its dependency on remote 

sensing NDVI. This limited the period for which the model could be run to the period 

when the NDVI data was available.   Another limitation of the model was that it used 

BIOME4 soil moisture to suppress dust emissions which is inconsistent with the vegetation 

cover derived from NDVI data.  

 

Broadly speaking two categories of dust cycle models have been developed to date; models 

which use remote sensing data to describe vegetation cover on the land surface and models 

which use the Equilibrium Biogeography-Biogeochemistry models (BIOME3 or BIOME4) 

to simulate the distribution of vegetation cover. The latter category can be used as 

predictive tools to estimate how the dust loading will change in the future under different 

climatic conditions.   

 

The predictive models currently available are unable to simulate the expansion and 

contract of dust source areas caused by the transient response of vegetation cover to 

changes in the climate.  As a consequence, it is not possible to test whether decadal scale 

changes in the dust loading are caused by natural variability or by human activity.  

 

1.5 Aims  

The research summarised in section 1.2 clearly shows that mineral dust plays an important 

role in the Earth’s system. The longest continuous measurements of dust concentrations 

have been made at Barbados (Prospero and Nees 1986). Concentrations were low in the
 

mid to late 1960s but increased sharply in the early 1970s
 
and have remained high ever 

since. Indeed a four fold increase was observed between the 1960s and the 1980s. The 

increase
 
in

 
dust concentrations during the

 
1970s has been associated with the onset of 

drought in sub Saharan Africa.  

 

Studies have shown that dust concentrations at Barbados are anti-correlated with 

precipitation in the Sahel during the previous year (Prospero and Nees 1986; Prospero and 

Lamb 2003; Evan et al. 2006). The study by Evan et al., (2006) suggested a three way 

connection between rainfall, vegetation and dust in the Sahel as follows; decreased 

precipitation in the Sahel reduces vegetation cover which increases the dust source areas 

and hence dust emissions.   
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This theory is supported by measurements of NDVI from the AVHRR which show that 

vegetation cover in the Sahel changes in response to precipitation (Tucker et al. 1991).  

This results in a north-south movement of the Sahara-Sahelian boundary line.  During 

1980-1984 the Sahara-Sahelian boundary moved southwards by 240km. This corresponded 

to a 15% increase in the area of the Sahara in 1984 compared to 1980.  

 

This raises the question; is an expansion of the Sahara caused by changes in vegetation 

cover in the Sahel, responsible for the high dust concentrations at Barbados during the 

1980s or is some other process at work?   

 

Only one modelling study has been reported in the literature which aimed at understanding 

the high dust concentrations during the 1980s at Barbados relative to the 1960s (Mahowald 

et al. 2002). Vegetation cover was simulated using the BIOME4 model in increments of 

five years from 1950 to 2000.  By doing this, they assumed that vegetation cover did not 

respond to changes in the climate any quicker than 5 years. This assumption is inaccurate 

because measurements show that the response of vegetation cover in the Sahel to rainfall is 

much faster than this (Nicholson et al. 1990; Herrmann et al. 2005). These studies found 

that NDVI over the Sahel is correlated with rainfall of the concurrent month plus the two 

previous months. The model by Mahowald et al. (2002) was unable to predict the high dust 

concentrations at Barbados during the 1984 relative to 1966. They concluded that there 

must have been an increase in the North African dust source. This was either caused by a 

shift in vegetation cover or an increase in land use, which degraded the soil enhancing 

emissions from the region.  

 

It is not possible, using currently available dust cycle models, to test whether a vegetation 

shift in the Sahel is responsible for the high dust concentrations measured at Barbados 

during the 1980s relative to the 1960s.   

 

Dust models which use remote sensing data to describe the vegetation cover are unsuitable 

for this type of study because of the lack of remote sensing data prior to the 1980s.  Models 

which use BIOME4 are also limited because these models are unable to capture the 

transient response of vegetation cover to changes in the precipitation, temperature, solar 

radiation and CO2.  This means that these models are unable to simulate the expansion or 

contraction of dust source regions caused by the dynamic response of vegetation cover to 

the climate.  
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For this reason, the primary aim of this thesis is to develop a new dust cycle model that 

uses a dynamic global vegetation model (DGMV) to predict the distribution of vegetation 

cover.  A DGVM simulates the dynamic response in vegetation cover by simulating time 

dependent ecological processes such as photosynthesis and transpiration, vegetation 

disturbance by fire, competition for resources, establishment and mortality.  

 

An additional advantage of using a DVGM within the framework of a dust cycle model is 

that the water balance will be consistent with vegetation cover. The fact that the water 

balance is calculated dynamically means that simulated soil moisture and snow cover can 

be used in the dust model to suppress dust emissions.  

 

A of choice of DGVMs are available; the IBIS model (Foley et al. 1996), HYBRID (Friend 

et al. 1997), VECODE (Brovkin et al. 1997), SDGVM (Woodward 1998), TRIFFID (Cox 

2001), ORCHIDEE (Krinner et al. 2005).  It is decided to use the Lund-Potsdam-Jena 

(LPJ) DGVM (Sitch et al. 2003) in this study for a two reasons. The first reason is that LPJ 

is a stand alone DGVM unlike other DGVMs which are used as land surface schemes 

within GCMs (Cox 2001; Krinner et al. 2005). The second reason is that development 

work is currently carried out on LPJ at the department of Geographical science at Bristol 

University.  The new dust model is referred to frequently in this thesis, so from this point 

onwards; it referred to as the ‘LPJ-dust’ model.  

  

Using a DGVM within the framework of a dust cycle model provides a unique opportunity 

to test whether the expansion and contraction of dust source regions in response to 

vegetation changes has a significant impact on the dust loading on decadal time scales.  

Studying the vegetation changes in the Sahara-Sahel is only one potential application of 

the LPJ-dust model. The model can be used to study inter-annual viability in other regions 

where vegetation cover is believed to constrain dust emissions.   

 

In Asia observations show that that there has been a decreasing trend in spring time dust 

storms since the mid-1950s to mid-1990s and an increasing trend from 1997-2002 (Lu et 

al. 2003). A study by Zou and Zhai (2004) showed that the frequency of springtime dust 

storms in Northern China and Central and Eastern Mongolia was anti-correlated with 

NDVI measurements. Other studies have related the variability to changes in wind speeds 

(Qian et al. 2002; Hara et al. 2006; Wang 2006). Assuming there is no anthropogenic 
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disturbance of the vegetation cover, the LPJ-dust model can be used to investigate which 

processes are responsible for the trends in springtime dust storm activity in Asia.  

 

Another potential application of the LPJ-dust model is that it can be used to investigate the 

cause of seasonality in the dust cycle.  The observational studies summarised in section 

1.3.1 show that there is strong seasonality in the dust cycle. No modelling studies have 

been reported in the literature which investigates the cause of this seasonality. Therefore, 

one of the aims of this thesis is to use the LPJ-dust model to investigate which processes 

control the seasonal variability in the dust cycle.  

 

As with any dust cycle model there will be aspects of the model where there is uncertainty.   

It was seen in  that estimates of the annual mean surface emissions vary by a factor of 3. 

Uncertainty can arise from the input meteorological data used to drive the model, by the 

values chosen for parameters and by the parameterisations used to represent physical 

processes. It will be seen in the model description contained in Chapter 2, that several 

threshold parameters are required to determine surface emissions. It is possible to reduce 

the uncertainty in these threshold values by tuning the model to find an optimal fit between 

the model and measurements. Indeed an objective tuning of a dust cycle model has not 

been carried out to date. For this reason a dust model tuning is carried out in this thesis.    

 

 

The specific objectives of this thesis are as follows: 

 

1. To develop a dust cycle model that uses the LPJ DGVM to calculate dust source areas 

as they change in response to vegetation dynamics.  

 

A description of the dust cycle model is contained in chapter 2. This includes details of 

how dust source areas are calculated from LPJ. A description of the dust emission scheme, 

the chemical transport model and the way in which dust is removed from the atmosphere is 

also described.  A baseline dust simulation is carried out and the regional surface emissions 

predicted by the model are compared to emissions from six other modelling studies.  

 

 

1. To improve the performance of the LPJ-dust model by carrying out a tuning exercise.  
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To improve the performance of the dust model the threshold parameters used to determine 

surface emissions and different sub cloud scavenging schemes are tested. The model 

tuning is described in chapter 3. The performance of the model is evaluated against 

multiple measurement datasets.  

 

 

3. To evaluate how well the model reproduces the seasonal variability in dust 

concentrations and to carry out sensitivity studies to test which processes control the 

seasonality in the dust cycle.  

  

Chapter 4 investigates how well the tuned model reproduces seasonal changes in dust 

concentrations. The seasonality in the total column dust loading predicted by the LPJ-dust 

model is compared to TOMS aerosol index. Seasonal changes in surface concentrations are 

compared to measurements from University of Miami aerosol network. Regions where the 

model performs well and poorly are identified and discussed. A series of sensitivity 

experiments are carried out to test which processes are responsible for the seasonality in 

surface emissions and the atmospheric dust loading.  

 

 

4. To test if decadal scale changes in vegetation cover can explain observed trends in the 

dust cycle.  

 

In Chapter 5 a study is carried out to investigate if vegetation changes in the Sahel can 

explain the high dust concentrations measured at Barbados during the 1980s relative to the 

1960s (Mahowald et al. 2002). Sensitivity studies are carried out to test if changes in 

vegetation cover have contributed to the decline in dust storms in Northern China (Zou and 

Zhai 2004).  To gauge how well the LPJ-dust model predicts inter-annual variability in 

surface concentrations from 1980-2000 a comparison is made with another modelling 

study in which remote sensing data is used to describe vegetation cover on the land surface 

(Mahowald et al. 2003).  

 

Finally, the degree to which these objectives have been met are discussed in chapter 6. 

This chapter also highlights areas for future research.   
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2 Dust model description  

The new dust cycle model consists of three existing models. The first is the LPJ dynamic 

global vegetation model (Sitch et al. 2003). LPJ is used to predict the distribution of 

vegetation cover as it changes with varying climate and CO2. Sparsely vegetated or bare 

ground regions are identified as potential dust sources. In addition to this, LPJ provides 

snow cover and soil moisture data which are used to suppress dust emissions.  

 

The second model consists of a dust emission scheme.  This model calculates dust 

emissions from the surface by saltation and sandblasting using the parameterisations 

developed by Marticorena and Bergametti (1995) and is based on a previous dust model 

(Tegen et al. 2002).  

 

The third component of the dust model is the chemical transport model TOMCAT 

(Stockwell and Chipperfield 1999). This is used to transport the dust particles by 

advection, convection and diffusion. Dust is removed from the atmosphere by sub cloud 

scavenging and dry deposition. The sub cloud scavenging and dry deposition 

parameterisations are taken from the work of Lunt (2001) who also used TOMCAT to 

transport dust within the framework of a dust cycle model.    

 

The three models are described in further detail in the following sections. Section 2.1 gives 

a background description of the LPJ model and the variables used to calculate dust source 

areas.  Section 2.2 compares LPJ vegetation cover to remote sensing data to investigate 

whether LPJ can predict spatial and temporal changes in vegetation cover accurately. 

Section 2.3 describes how LPJ vegetation cover, soil moisture and snow depth are used to 

derive dust source areas. This is followed by a description of the model which calculates 

dust emissions in section 2.4. A description of how dust is transported and removed from 

the atmosphere is contained in section 2.5. Section 2.6 describes the steps taken to reduce 

the simulation time of the transport experiments. Finally the results of a baseline dust 

simulation are presented and discussed in section 2.7.  

 

2.1 The Lund-Potsdam-Jena dynamic global vegetation model 

The FORTRAN version of the LPJ source code used in this work was obtained from the 

Potsdam Institute for Climate Impact Research. LPJ simulates vegetation dynamics by 



Chapter 2: Dust model description 

 36 

modelling the atmosphere-vegetation carbon and water fluxes, plant physiology, 

phenology, establishment and mortality. LPJ calculates daily gross primary production 

(GPP) by modelling the processes of photosynthesis and transpiration using a coupled 

photosynthesis and water balance scheme developed in the BIOME3 model (Haxeltine and 

Prentice 1996). A fraction of the GPP produced is used for the plant respiration. The 

remaining fraction which called the net primary production (NPP) is allocated to the leaf, 

sapwood and fine root carbon pools, satisfying a series of structural constraints.   

  

Vegetation is grouped into ten plant functional types (PFTs) which are categorised 

according to their plant physiological (C3, C4 photosynthesis), phenological (deciduous, 

evergreen) and physiognomic (tree, grass) attributes. Plant mortality by fire, heat stress, 

competition for light and whether there is insufficient carbon to grow is modelled on an 

annual basis. Every year a proportion of the total vegetation cover decomposes and falls to 

the surface as litter and new vegetation is established. A set of bioclimatic limits are used 

to determine if a PFT can survive within a particular temperature range. Information on the 

bioclimatic limits has been collated from laboratory studies of plant behaviour under 

extremes of temperature.  

 

LPJ is forced using annual mean CO2 and monthly mean precipitation (mm), cloud cover 

(%) and temperature (
o
C). The monthly climate data used to drive the model comes from 

the Climate Research Unit (CRU 2.1). The historical CO2 data from 1901 to 1995 is 

obtained from the Carbon Cycle Model Linkage project on a 0.5 x 0.5 degree spatial 

resolution.   The CRU 2.1 data is obtained for the years 1900 to 2002 at a spatial resolution 

of 0.5 x 0.5 degrees from the University of East Anglia, UK.  The CRU data extends to the 

year 2006 but LPJ is only run until the year 2002. The reason for this is because the ERA-

40 reanalysis data that is used to drive the dust emissions, transport and removal is only 

available until the year 2002.  

 

Information on soil texture is taken from the Zobler soil map at a 0.5 x 0.5 degree spatial 

resolution. This is used to calculate the daily percolation of water from the upper soil layer 

to the lower soil layer. The LPJ simulation begins with no vegetation cover and is allowed 

to spin up for 1000 years so that the vegetation cover and carbon pools reach equilibrium. 

This is done by forcing the model with the first 30 years of the CRU climate repetitively 

for 1000 years.  After this, the model is forced by 102 years of the CRU climate. The LPJ 

outputs used to calculate the dust source areas are:  
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1. Annual foliage projective cover (FPC):  

The FPC is the overall fractional coverage of PFT in a grid cell. The FPC has a value of 1 

if the grid cell is completely covered in vegetation or 0 if there is no vegetation cover 

present. The FPC is calculated by scaling up the FPC for each PFT using the following 

relationship.  

 

indFPCPCAFPC ..=     Equation 2-1 

 

Where CA is the crown area and P is the population density of the PFT. The crown is 

calculated using an empirical relationship between crown area and stem diameter (Zeide, 

1993).  The FPCind is calculated using the following relationship (Monsi and Saeki, 1953)  

 

)5.0exp(1 indind LAIFPC −−=     Equation 2-2 

Where LAIind is the leaf area index of the PFT which is related to the amount of carbon in 

the leaf.  

 

2. Annual growing degree days base 5
o
C 

GDD5 is calculated by taking the average of the daily maximum and minimum 

temperatures and subtracting this from the base temperature which is 5 °C  

 

C
TT

GDD o5
2

minmax
5 −

−
=     Equation 2-3 

 

3. Annual tree height 

The annual tree height is calculated using the empirical relationship between vegetation 

height and stem diameter (Huang et. al., 1992)  

3

2

allom

allom DkH =     Equation 2-4 

Where allom2 =40 and allom3=0.5 are constants and D is the diameter of the stem.   

 

 

4. Monthly soil moisture in the upper 0.5m of the soil layer 

The soil moisture in LPJ is calculated using a semi-empirical approach which was 

developed in the BIOME3 model (Haxeltine and Prentice 1996). The soil is divided into 

two layers of 0.5m each. The water held in each layer is calculated daily by taking into 
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account the precipitation, snowmelt, percolation, evapotranspiration and runoff. The 

percolation rate is dependent on the soil texture. When the soil layer is at field capacity the 

excess water is considered to be runoff. The soil water content of the upper layer on any 

given day is related to the amount of water into the soil layer plus the water out of the soil 

layer during the previous day.  

11 /)( AWCAETrunoffpercprecipmeltsm β−−−+=    Equation 2-5 

Where melt is the snowmelt (mm), precip is the precipitation (mm), runoff is the runoff 

(mm) and β1 is the rate of transpired water from the upper layer to the lower layer. AET is 

the calculated evapotranspiration rate for each plant functional type. AWC1 is the available 

water holding capacity.   

 

5. Monthly snow depth  

LPJ calculates monthly snow depth using daily precipitation data which is derived from 

monthly precipitation that has been interpolated onto a daily time step. When the daily 

temperature is less than -2
o
C, new snow is formed. The magnitude of the snow formed is 

proportional to the daily precipitation.  An adjustment is made to the snow depth to 

account for the melting of snow. Snow melt occurs when the daily temperature is greater 

than -2
o
C. The amount of melting is related to the temperature by snow melt coefficient 

taken from the BIOME3 model (Haxeltine and Prentice 1996).  

 

6. Monthly Fraction of photosynthetically active radiation (FPAR)  

The monthly FPAR predicted by LPJ gives an indication of the state and productivity of 

the vegetation cover. This quantity is defined as the fraction of incoming solar radiation 

absorbed by vegetation cover which is used to drive photosynthesis. It is calculated using 

the following relationship,  

  

phenindDFPCFPAR =     Equation 2-6 

 

Where Dphen is the daily leaf-on fraction which is calculated from the GDD5. If Dphen is 1 if 

the vegetation has leaf cover and 0 if it has no leaf cover.  

 

2.2 Validating LPJ outputs used to calculate dust source areas  

Studies have already been carried out to validate various outputs from the LPJ model. LPJ 

soil moisture has been validated against soil moisture observations for sites in regions with 
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Boreal, temperate and Mediterranean climates (Sitch et al. 2003).  The soil moisture has 

been found to be in good agreement with measurements for different ecosystems with the 

exception of some sites in Russia where there is Boreal forest vegetation. This region is not 

a dust source so this will not have an impact on dust emissions.  

 

The distribution of PFTs predicted by LPJ has also been validated against remote sensing 

observations from the AVHRR (Sitch et al. 2003). LPJ is broadly able to predict the 

latitudinal variation in PFT that is seen in the remote sensing data. LPJ correctly predicts 

the Boreal PFTs at high latitudes with a transition to temperate PFTs at lower latitudes and 

tropical PFTs at the Equator.  Furthermore, LPJ does a reasonably good job at predicting 

distribution of C3 and C4 grasslands but has been found to overestimate the abundance of 

woody PFT in the African Sahel.  

  

Validation work has been carried out to test how well LPJ predicts the density of 

vegetation cover. Schroder and Lucht (2003) compared LPJ FPAR to satellite based 

observations of FPAR from the AVHRR.  They found that LPJ overestimated productivity 

in the Boreal and temperature forests as well as in tropical forest in Africa and South 

America.  

 

A study by Seaquist et al. (2009) tested the ability of LPJ to predict the inter-annual 

viability in vegetation cover over the Sahel. They compared the annual maximum leaf area 

index from LPJ to annual maximum NDVI from the AVHRR. It was found LPJ was able 

to predict the inter-annual variability in vegetation cover aggregated over the Sahel for the 

years 1982-2002.   Regionally, LPJ predicted the inter-annual variability well in Northern 

Senegal, Southern Mauritania Central Mali, Western Niger, Sudan and in Eretria.  They 

found strong disagreement in North Niger, with smaller areas of disagreement in South 

West Mali and Ethiopia which could not be explained by changes in agriculture practices 

or in the population density.  It is significant that LPJ is able to predict the inter-annual 

variability in vegetation cover in most of the Sahel because the expansion and contraction 

of this region affects the size of the Sahara. In chapter 5 it is investigated whether an 

expansion of the Sahara can account for the four fold increase in dust concentrations 

measured at Barbados during the 1980s relative to the 1960s (Prospero and Nees 1986).  

  

For his study, we are interested in whether LPJ can predict the vegetation distribution and 

temporal variability in vegetation dynamics in semi-arid regions as this will have an impact 
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on dust emissions. The timing of the minimum vegetation cover and the length of the time 

when the vegetation cover is below a threshold limit will determine the timing and length 

of the dust emitting season. A validation of this type has not been reported in the literature; 

therefore, it is necessary to carry this out.  To test how well the LPJ model predicts the 

temporal variability in vegetation dynamics, the simulated monthly FPAR is compared to 

FPAR derived from remote sensing data.  

 

2.2.1 Evaluation of simulated and observed FPAR  

Monitoring the distribution and evolution of vegetation cover from space commonly 

involved using the Normalized Difference Vegetation Index (NDVI) (James 1995). This 

measurement is based on the fact that plants absorb radiation in the red wavelength and 

reflects in the near infra-red.  The NDVI is a measure of the difference in reflectance 

between the red wavelength (0.58-0.68µm) and the near infra-red wavelength (0.72-

1.10µm). NDVI observations are sensitive to several factors such as changes in soil colour, 

atmospheric perturbations and to the geometry of illumination.   

 

As an alternative to NDVI, FPAR data from the Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) is used to validate LPJ. The SeaWiFS sensor takes measurements in the blue 

spectral band which is sensitive to aerosol loading. This measurement technique results in 

improved data quality when compared to NDVI data. This is because perturbations by 

aerosols can be corrected for.  

 

The quality of the SeaWiFS data has been evaluated by Gobron et al. (2006). It was shown 

that the SeaWiFS FPAR responded to particular events such as the 2003 heat wave and the 

2002 fires in Oregon. In the same paper, the SeaWiFS data was validated against surface 

estimates of FPAR at specific sites by measuring the radiation above and below the canopy 

in the photosynthetically active wavelength range. There was good agreement between the 

surface estimate of FPAR and the SeaWiFS FPAR with the exception of data at high 

latitudes where the SeaWiFS data was shown to be unreliable. This is due to errors in 

measurements made at low solar zenith angles. In addition, snow cover and nearly 

continuous cloud cover also contribute to the uncertainty in the data at high latitudes. The 

most northerly point at which the SeaWiFS FPAR data has been validated against surface 

observations of FPAR is 48
o
N. When comparing the LPJ FPAR to the SeaWiFS FPAR, the 

data north of 48
o
N may not be accurate. The monthly composite FPAR from SeaWiFS is 



Chapter 2: Dust model description 

 41 

downloaded from the website: http://fapar.jrc.it/Home.php for the period 1998 to 2002 and 

used in the following section.   

 

Figure 2-1 shows a comparison between the LPJ simulated monthly mean FPAR and 

measured FPAR averaged over the years 1998 to 2002. The figure shows that there is a 

systematic overestimate in the simulated FPAR compared to the SeaWiFS FPAR. This is 

particularly apparent in regions with a high density of vegetation such as the Boreal forest 

in Canada and Eurasia and the tropical forest regions. A similar finding was reported by 

Schroder and Lucht (2003) who compared LPJ FPAR to FPAR derived from the AVHRR.  

This discrepancy will have no impact on dust emissions because these regions will never 

have sparse enough vegetation cover to act as dust sources. Both the model and the 

observations show low productivity in the main arid and semi arid regions and at high 

latitudes.  

 

The location of sparsely vegetated regions in North Africa, the Arabian Peninsula and 

Asia, Australia, North and South America are prominent in both the modelled data and the 

observations. LPJ over predicts the density of vegetation cover in Australia compared to 

the SeaWiFS data. This is the first indication that LPJ may not simulate the vegetation 

dynamics correctly in Australia. It will be shown in section 2.2.2 that LPJ is also unable to 

predict the seasonality in vegetation cover in Australia. This has implications for 

estimating dust emissions from Australia.  

 

It is worth noting that an exact match between the remote sensing and modelled FPAR is 

not possible because the remote sensing data contains cultivated land, while the LPJ data 

represents vegetation in its natural state. This aside, the model does a reasonably good job 

at predicting low FPAR values in the major desert and semi-arid regions.  
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Figure 2-1 Comparison between the simulated annual mean FPAR from LPJ with annual 

mean FPAR from the SeaWiFS sensor. The LPJ simulation has been driven by CRU 2.1 

climate data.    

 

2.2.2 Evaluation of simulated and observed seasonality in FPAR  

This section examines how well LPJ predicts seasonal changes in vegetation cover 

compared to the remote sensing data. As mentioned in the previous section LPJ 

systematically overestimates FPAR compared to the SeaWiFS data.  To compare the two 

datasets the SeaWiFS FPAR is scaled so that the annual mean FPAR over the years 1998-

2000 over all grid boxes equals the annual mean FPAR from LPJ over the same years over 

all grid boxes. The SeaWiFS data is scaled by multiplying the data by a factor of 2.3669.  
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Figure 2-2 shows the number of months when the FPAR is below 0.5 for the LPJ data and 

SeaWiFS data. This gives an indication of the length of time a particular region is a 

potential dust source. The threshold value of 0.5 is somewhat arbitrary and chosen on the 

basis that dust emissions will not occur when a grid box is more than half covered with 

vegetation. The FPAR threshold will be tuned later in Chapter 3.  

 

The model and the observations show that the key desert regions emit dust all year round. 

At the boundary of some of theses regions dust is emitted for part of the year. There is 

reasonable agreement between the model and the SeaWiFS data in South America, South 

Africa, Northern India and Australia. There is notable difference in North America and in 

Central Asia (north of the Caspian Sea). The discrepancy is likely to be caused by a 

difference in the vegetation type predicted by LPJ and the actual vegetation type. This is 

further complicated by the fact that the vegetation cover may be modified by land use.   

 

Figure 2-3 shows the month when the vegetation is at a minimum for both LPJ and 

SeaWiFS data. In Asia the vegetation cover has a minimum in January which agrees with 

the SeaWiFS data. This can be explained by cold winter temperatures which cause the die 

back of C3 grasses in this region. The dominant plant function types predicted by LPJ are 

shown in Figure 2-4.    

 

In the Sahel region, LPJ correctly predicts the timing of the minimum FPAR in April-May. 

The climate of the Sahel is characterised as having a long dry season lasting from October 

to May followed by a wet winter season from June to September. The minimum vegetation 

cover coincides approximately with the end of the hot dry season where the vegetation has 

been exposed to an extended period without rainfall.  

 

In Northern India Figure 2-3 shows that the timing of the minimum vegetation cover 

occurs in May in the observations, but slightly early in April in the LPJ data. This comes at 

the end of the dry season (March to May) when temperatures are at the highest.  

 

There are notable differences between the timing of the minimum vegetation cover in 

Australia, North America and in South Africa. In Australia the minimum vegetation cover 

in the SeaWiFS data is observed from November to January, which coincides with the 

Southern Hemisphere summer. The onset of the minimum occurs slightly earlier in the LPJ 
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data between August-September. This time difference may have implications for 

predicting seasonal emissions in dust from Australia. 

 

The reason for the difference in timing may be because LPJ represents vegetation cover in 

Australia in an over simplistic way. Figure 2-5 shows vegetation types from the Mathews 

vegetation map (Matthews 1983). This is a map of vegetation types compiled from existing 

maps of vegetation and remote sensing data. The Matthews vegetation map shows that 

Australia contains desert, xeromorphic shrubland and tall/medium/short grass with shrub 

cover.  In contrast LPJ simply predicts C3 grasses. Indeed LPJ does not simulate shrub 

PFTs.   

 

In the interior of South Africa, LPJ predicts minimum vegetation cover between June and 

August. This is also seen in the SeaWiFS in Figure 2-3. This coincides with the driest 

months in this region. LPJ is unable to predict the timing of the minimum vegetation in the 

northern South Africa and on the costal regions. The Matthews vegetation map shows the 

presence of xeromorphic shrubland, however, LPJ predicts C3 grasses and desert.    

 

In South America LPJ is successful at predicting the timing of the minimum vegetation 

cover Patagonia in June-July-August. These are the months when temperatures are lowest 

in Patagonia. Differences are seen between the SeaWiFS data and the LPJ data further 

north in the Peruvian desert. LPJ predicts the minimum vegetation cover in June-July-

August while the SeaWiFS data predicts minimum vegetation slightly later in September-

October.  

 

2.2.3 Evaluation of simulated and observed inter-annual variability in 

FPAR 

This section explores if LPJ can simulate the expansion and contraction of sparsely 

vegetated regions on inter-annual time scales. A comparison is made with SeaWiFS data 

again. The standard deviation FPAR <0.5 over the years 1998 to 2002 can be seen in 

Figure 2-6.  Values of zero correspond with regions that do not vary from year to year or 

are not a dust source.  
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Figure 2-2 The number of months when the FPAR is less then 0.5. The SeaWiFS data 

has been scaled by multiplying by a factor of 2.3669. Grid boxes where LPJ predicts 

trees are excluded in both plots.  
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Figure 2-3 The timing of the minimum vegetation cover from the LPJ FPAR data and 

the SeaWiFS FPAR. Grid boxes where LPJ predicts trees are excluded in both plots.  
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Figure 2-4 The dominant plant function type simulated by LPJ. The simulation has 

been driven with CRU 2.1 climate data.  The FPC is averaged for the years 1998 to 

2002 

 

 

 

 

Figure 2-5 Vegetation type from the Matthews vegetation map (Matthews 1983) 
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Inter-annual variability is seen at the boundaries of the arid and semi-arid regions in both 

the LPJ data and the SeaWiFS data. The maximum standard deviation in FPAR is similar 

in both datasets (0.25).  LPJ predicts more extensive inter-annual variability in Asia, North 

America, South America, South Africa and in Australia than the SeaWiFS data. This is 

likely to be caused by an over simplification of the vegetation type predicted by LPJ.  LPJ 

simulates C3 grasses in these regions (Figure 2-4) while the Matthews vegetation map 

shows that these regions contain xeromorphic shrubland and a mixture of 

tall/medium/short grass with shrub cover (Figure 2-5).  

 

In the Sahel, the inter-annual variability in LPJ FPAR has been validated by Seaquist et al. 

(2009). Good agreement was found between the years 1982-2002 with remote sensing 

NDVI as was mentioned in section 2.2.  

 

2.3 Using LPJ to calculate dust source areas 

This section describes how LPJ outputs are used to calculate dust source areas.  The first 

step is to convert LPJ PFTs into biomes.  A biome map is constructed every year from the 

annual mean GDD5, tree height and FPC (Joos et al. 2004).  If the GDD5 is less than 500
o
C 

day then tundra vegetation is present. When the GDD5 is greater than 500
o
C day dry grass, 

dry shrubland and dry woodland biomes are present. Tree biomes occur when the tree 

height is greater than 10 m. Short trees with a height of less than 4 m area assumed to be 

shrubs. This assumption is made because LPJ does not simulate shrub plant functional 

types. A map of the biomes can be seen in Figure 2-7.   

 

It could be argued that converting PFT into biomes is an unnecessary intermediate step and 

that the dust source areas could be simply be calculated directly using FPC or FPAR. This 

was explored but it was found that using FPC or FPAR lead to a very large source area in 

the Canadian Arctic. This is caused because LPJ predicts barren land combined with low 

soil moisture and low snow cover which is the criteria for a dust source.  In reality this is a 

permafrost region. Using the scheme developed by Joos et al., (2004) allows polar desert, 

which has low GDD5 and is not a dust source, to be distinguished from a hot desert which 

has high GDD5 and is a dust source.  
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Figure 2-6 Comparison between the inter-annual variability in FPAR < 0.5 from 

SeaWiFS and LPJ data   

 

 

 

For grass-dominated biomes (tundra grass and dry grass) the area exposed for dust 

emission varies seasonally.  Aveg is linearly proportional to the FPAR below a threshold 

value FPARlim.  

 









−=
lim

1
fpar

fpar
Aveg  

 
 

for  fpar < fparlim  

otherwise Aveg=0 

   Equation 2-7 

 

Shrub dominated biomes are treated differently to grass dominated biomes. Shrubs are 

assumed to protect the surface all years round even when no leaves are present. The annual 

maximum FPAR (FPARmax) is used as an index for the density of shrubs. For shrub 

dominated biomes, the area is calculated as   
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max1 fparAveg −=     Equation 2-8 

 

This means the dust source area remains constant throughout the year but decreases to zero 

when the (FPARmax) =1.   

 

At high latitudes, dust emission is suppressed by snow cover. In the winter, high latitude 

regions are completely covered in snow. This melts as the summer time commences, 

exposing the surface to erosion.  Snow cover, therefore, has a seasonal impact on dust 

emissions. The seasonal change is snow depth can be seen in Figure 2-8.  The area exposed 

for dust emission is related to the LPJ snow depth value below a threshold value (sdlim).  

 

lim

1
sd

sd
Asnow −=     Equation 2-9 

 

Dust emissions are only permitted when the soil moisture is below a threshold value.  The 

total area available for dust emission is related to area of dry ground that is not covered by 

vegetation or snow. The erodible areal fraction Abare is expressed by the following factorial 

form  

 

θIAAA snowvegbare ).)((=                                       Equation 2-10 

         

Where Aveg is the contribution of exposed ground from vegetation cover, Asnow is 

contribution from snow cover and Iθ is the soil moisture. When the soil moisture is above a 

threshold limit (smlim) then Iθ has a value of 0 and there is no dust emission. On the other 

hand, if the soil moisture is below smlim then Iθ has a value of 1 and dust emission will 

occur. This is the same approach taken by Tegen et al., (2002) to switch dust emissions on 

or off.  Figure 2-9 shows a plot of the simulated annual mean soil moisture.  The FPARlim, 

smlim and the sdlim are tuneable parameters. In Chapter 3 a tuning exercise is carried out to 

determine the best values for these threshold limits.  
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Figure 2-7 A biome map constructed from LPJ output using foliage projective cover, 

growing degree and tree height using the scheme described in Joos et al., (2004)  

 

 

 

 

2.4 The dust flux calculation 

This section describes the dust emission model which is used in this work. The scheme 

comes from the work of Tegen et al., (2002) and the code was provided by Ina Tegen. The 

calculation of the dust is based on the work of (Marticorena and Bergametti 1995). The 

horizontal flux Gj is generated by saltating particles. This is calculated as 
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     Equation 2-11 

 

where ρa is the density of air (kgm
-3
), g is the gravitational constant (ms

-1
), u* is the surface 

wind velocity (ms
-1
) and u

*
t is the threshold friction velocity (ms

-1
).  sj is the relative 

surface area covered by each size fraction j.   
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Figure 2-8 Seasonal variability in simulated snow depth data from LPJ for the year 

1987 
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Figure 2-9 Monthly mean soil moisture simulated by LPJ for the top 0.5 m soil layer.    

 

 

u
*
t is calculated as a function of particle diameter using a semi-empirical relationship 

described by Iversen and White (1982). The relationship between u
*
t and the particle 

diameter is shown in Figure 1-1.  u
*
t is modified to account for the presence of non-

erodible elements such as vegetation cover or rocks which reduces the wind speed 

momentum.  u
*
t is modified by dividing by the drag partition ratio feff which is a function 

of the surface roughness (Marticorena and Bergametti 1995)  
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where roughness length of a surface with no obstacles z0s=0.001cm. The roughness length 

of the z0=0.01cm is used which is typical value for level desert (Seinfeld 1998).  

 

In the Tegen et al., (2002) model the u
*
t for each particle size is reduced by a factor of 

0.66. This value was found to give the best results with dust storm frequency data and dust 

deposition rates in Florida. This scaling factor will be tuned in chapter 3.   

 

The dust flux is calculated on a six hourly time step using ERA-40 10 m wind speeds at a 

1
o
 x 1

o
 resolution. The wind speeds are interpolated to a 0.5 x 0.5 degree resolution by   

assuming that four adjoining half degree pixels have the same wind speed as a 1
o
 degree 
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pixel. The 10m wind speeds are modified to give the friction velocity as a function of 

surface roughness, such that  

 

)ln(
0

*

z

z

k

u
u =      Equation 2-13 

 

where k is the Von Karman constant=0.4 (dimensionless), z is the height (m), z0 is the 

roughness length (m) and u (ms
-1
) is the ERA-40 10 m wind speeds.  

 

The vertical flux is related to the horizontal flux by the sandblasting mass efficiency α. The 

α values used in the model are taken from Marticorena et al., (1997) who summarise the 

experimental values for different soil types. These are listed in Table 2-1 

Table 2-1.  α values are large for soils containing silt and small for soils containing sand. 

The α value for soil with a high clay content is reduced to account for the strong inter-

particle cohesion forces which make the soil less erodible.  

 

The vertical flux F is estimated from the horizontal flux by the following  

 

GAF bareα=     Equation 2-14 

 

where G is the vertical flux from Equation 2-11.  Abare is the area of bare ground available 

for dust emission which has been calculated from LPJ data in Equation 2-10.  

 

 

2.4.1 Soil texture and particle size distribution 

The treatment of the particle size distribution in the Tegen et al., (2002) model is based on 

the work of Marticorena and Bergametti (1995). The size of particles entrained into the 

atmosphere is dependent on the soil texture at the surface. The soil texture information is 

taken from the Soil Food and Agriculture Organization United Nations Educational, 

Scientific and Cultural Organization soil map of the world (Zobler 1986). This is a map of 

soil texture in the top 30cm of the soil on a 0.5 x 0.5 degree grid. The standard soil textural 

triangle is used to derive the relative abundance of the 4 main soil types; clay, silt, 

medium/fine sand and coarse sand for each soil texture.  The percentage mass of each 

fraction is listed in  
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Table 2-1. It can be seen that the fine grain soil texture contains a high proportion of silt 

and clay. In contrast, the coarse soil texture predominately contains coarse sand and 

medium sand. The particle mass distribution for each soil texture type is calculated using 

the following equation  
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Equation 2-15 

 

Dp is the particle size, Mj is the percentage mass of coarse sand, medium/fine sand, silt or 

clay listed in Table 2-1. MMDj is the mass median diameter. The mass median diameter is 

710µm for coarse sand, 160µm for medium/fine sand and 15µm for silt. σj is the geometric 

standard deviation which has a value of 2 for all the soil types.  

 

The six hourly surface emissions are calculated for the 8 particle size bins on a 0.5 x 0.5 

degree spatial resolution.  The limits of the size classes are 0.1µm, 0.3µm, 0.9µm, 2.6µm, 

8µm, 24µm, 72µm and 220µm. The emissions are re-gridded onto a T42 spatial resolution 

grid for input into the chemical transport model which is described next.  

 

 

Soil texture classes   α cm
-1
 Coarse  Medium/ 

Fine Sand  

 Silt   Clay  

Coarse  2.1x10
-6
 0.43 0.4 0.17 - 

Medium  4.0x10
-6
 - 0.37 0.33 0.3 

Fine  1.0x10
-7
 - - 0.33 0.67 

Coarse-Medium  2.7x10
-6
 0.1 0.5 0.2 0.20 

Coarse-Fine  2.8x10
-6
 - 0.5 0.12 0.38 

Medium-Fine  1.0x10
-7
 - 0.27 0.27 0.48 

Coarse-Medium-Fine  2.5x10
-6
 0.23 0.23 0.19 0.35 

Organic  - 0.25 0.25 0.25 0.25 

 

Table 2-1 Soil parameters used to calculate the particle size distribution.  Column 1 

contains the sandblasting mass efficiency values for the different soil textures.  

Columns 2, 3, and 4 contain the relative mass of the main soil types for each of the 

Zobler soil textures which are used to calculate the particle size distribution.  
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2.5 Dust transport and removal  

The chemical transport model TOMCAT is used to transport dust in the atmosphere. 

TOMCAT is an off-line three-dimensional chemical transport model (Stockwell and 

Chipperfield 1999). TOMCAT was initially developed to model stratospheric chemistry 

but has been extended to model chemistry in the troposphere. TOMCAT is driven by 3-D 

wind speeds, specific humidity and temperature which can be derived from either 

meteorological re-analysis data or GCM output. TOMCAT simulates the transport of 

gaseous or aerosol species via advection, convection and vertical diffusion.   For this 

application it is assumed that dust does not interact with other species in the atmosphere. 

Therefore, TOMCAT is run with the chemistry modules switched off.   

 

The horizontal and vertical resolution of TOMCAT depends on the spatial resolution of the 

input meteorological data. The ERA-40 reanalysis data used to drive TOMCAT has a T42 

spatial resolution. This corresponds to 64 latitude points and 128 longitude points. There 

are 31 vertical pressure levels extending from the surface to the stratosphere. The model 

has a dynamical time step that can be specified. For the dust simulations the model time 

step is one hour.   

 

The advection scheme used in TOMCAT is the conservation of second order moments 

developed by Prather (1986). This scheme models the transport of tracer between grid 

boxes in the x, y and z directions by numerically solving the advection equation 

 

( )
0).( =∇+

∂
∂

∂ ρ
ρ

ur
t

r
    Equation 2-16 

 

where r is the mass mixing ratio of tracer (kgkg
-1
), ρ is the local density of air (kgm

-3
), and 

u is the wind velocity (ms
-1
) which has components in the x, y and z direction taken from 

metrological data.   

 

The Prather advection scheme is a modifaction of an upstream advection scheme. An 

upstream scheme calculates the tracer flux into a grid box, as the tracer concentration in the 

‘up-wind’ grid box multiplied by the wind velocity at the interface of the two grid boxes, 

multipled by the model time step.   The Prather advection scheme is a modification of the 

slope scheme Russell and Lerner (1981). The slope scheme calculates the linear 

distribution of the tracer concentration at every grid box, every model time step.  The 
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Prather scheme extends this by calculating a curve to represent the tracer distribution in a 

grid box, every model time step.   

 

This makes the Prather advection scheme more computentially expensive than the slopes 

scheme.   Prather (1986) found that it took 1.5 times longer to run the Prather advection 

scheme than the sclope scheme. However, it has been shown that the Prather scheme 

performs better than other advection schemes.  Ge and Lei (1998) compared the Prather 

advection schemes to an anti-diffusion Smolarkiewicz scheme in a region transport model.  

It was shown that numerical diffusion in the Prather scheme was one order of magnitude 

less than the anti-diffusion Smolarkiewicz scheme, thus providing better results.   

 

Convection is parameterised in TOMCAT using a scheme by developed by Teidkte (1998). 

This scheme has been modified in TOMCAT. Details of the modifications are described in 

Stockwell and Chipperfield (1999). The scheme includes cumulus updrafts in the vertical 

direction and the exchange of air from inside the cloud to outside the cloud and vice versa. 

The convective scheme calculates the mass of tracer that is uplifted within a cloud column. 

The scheme requires 3 dimensional temperature and humidity data which is obtained from 

ERA-40 reanalysis data.  

 

Vertical diffusion is parameterised in TOMCAT using a scheme developed by Louis 

(1979). This scheme is described in further detail in Stockwell and Chipperfield (1999). 

The vertical diffusion scheme does not account for large-eddy transports that can occur 

throughout the planetary boundary layer (PBL) and or for entrainment at the top of the 

PBL. This means that mixing both within the PBL itself and between the PBL and the 

lowermost free troposphere will be underestimated in TOMCAT (Stockwell and 

Chipperfield 1999). 

 

 

2.5.1 Dry deposition 

Particles are removed from the dust model by wet and dry deposition. Dry deposition is the 

transport of particles from the atmosphere to the surface in the absence of precipitation. It 

is parameterised in the model by representing two physical processes. The first process is 

the gravitational settling of a particle from the atmosphere to the quasi laminar sub layer. 

This is a thin layer of air at the surface which is stationary. The second process is the 
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transport of the particle across the quasi laminar sub layer where it finally adheres to the 

surface.  The dry deposition parameterisation is taken from Lunt (2001) which is based on 

equations for dry deposition described in Seinfeld (1998).    

 

The rate at which a particle is removed by dry deposition per unit area per unit time Fz is 

proportional to the concentration of dust at a particular height Cz and to the deposition 

velocity vs by the following relationship. 

  

zdz CvF =     Equation 2-17 

 

The dry deposition process is often conceptualised in terms of an electric circuit containing 

resistance in series. ra is the aerodynamic resistance and rb is the quasi laminar sub layer 

resistance. The total vd is then 
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    Equation 2-18 

 

The first expression of the equation corresponds to the gravitational settling velocity (vs). 

The second expression corresponds to the deposition velocity across the quasi laminar sub 

layer.  An explanation of how rb is calculated is contained in section 2.5.1.2.   

 

2.5.1.1 Gravitational Settling 

During a particle’s descent to the surface, it experiences an aerodynamic resistance in the 

opposite direction to its path. The magnitude of the aerodynamic resistance is proportional 

the particle size. The opposing forces of gravity and aerodynamic resistance can be equated 

using Newton’s second law of motion. This is a first order partial differential equation that 

can be solved for vs to give    
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Where ρp is the density of the particle (kgm
-3
), Dp is the particle diameter (m), g is 

gravitational constant (ms
-2
), µ is the viscosity of air (kgm

-1
s
-1
) and Cc is the slip correction 

factor. This relationship is known as Stokes Law.  
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When the particle diameter approaches the same magnitude as the mean free path of the 

medium then the medium no longer acts a continuum and Stokes law overestimates the 

value of vs. A correction is made for this using the slip correction factor Cc.   The slip 

correction factor is given by   
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Where λ is the mean free path of the particle.   

 

Dust is transported downwards by gravitational settling through each model vertical level 

with the exception of the lowest level. A simplification is made in which particles are 

prohibited from falling through multiple vertical levels within one time step (1hour). At 

high altitudes the distance between vertical levels is large so this assumption should not 

have any significant impact. In addition to this, large particles do not reach high altitudes.   

 

2.5.1.2 Transport across the sub laminar layer 

To reach the surface, dust particles must cross the quasi sub laminar layer. Dust is 

transported across this layer by three processes; Brownian motion, internal impaction and 

interception with the surface. Brownian motion is the random movement of particles, some 

of which will hit the surface. Inertial impaction is when the particles hit the surface 

because of their momentum. The total resistance experienced by a particle will depend on 

the combination of these processes. For very small particles Brownian motion is the 

predominant means of transport across the layer.  

 

The resistance of the quasi sub laminar layer in Equation 2-18 is defined as  
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   Equation 2-21 

 

Where Sc is the Schmidt number which accounts for Brownian motion of very small 

particles. The Schmid number Sc is calculated as Sc=υ/D, υ is the kinematic viscosity of 
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air and D is the molecular diffusivity.  St is the Stokes number which accounts for inertial 

impaction for larger size particles. u* is the surface wind speed which comes from ERA-40 

reanalysis data.  This approach is identical to the work of Lunt (2001) and Lunt and Valdes 

(2002).   A diagram of the dry deposition processes can be seen in Figure 2-10 

 

 

 

Figure 2-10 A schematic of the processes of gravitational settling and transport across 

the sub laminar layer which takes place at every model time step.   

 

 

2.5.2 Wet Deposition 

Dust is removed from the atmosphere by the process of sub-cloud scavenging. This takes 

place every hour in the model. The amount of mass removed is proportional to the 

precipitation rate by a factor called the scavenging coefficient such that, 

 

t

t eCC Λ= 0     Equation 2-22 

 

C0 is the initial tracer mass and t is the model time step and Λ is the scavenging coefficient 

which has units of s
-1  
(Seinfeld 1998). 
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Dust is removed by two types of precipitation in the model 

1. Large scale precipitation  

2. Convective precipitation 

  

To calculate the amount of dust removed by sub-cloud scavenging, the vertical 

precipitation rate pz is required. 3d precipitation fields are generally not archived by 

ECMWF or GCMs; however, surface precipitation data is available. The vertical 

precipitation profile is derived from the surface precipitation by assuming a vertical cloud 

structure for convective and stratisform cloud. Fractional low and medium cloud cover 

data is used to do this. This approach is taken from Lunt (2001) who also used TOMCAT 

to transport dust in a dust cycle model. The units of the fractional cloud cover vary from 0-

1 where 1 represents complete cloud cover.   

 

Convective cloud is assumed to have a base at 90% of the surface pressure and extends all 

the way to the tropopause. The precipitation is zero at the top of the cloud and varies 

linearly to the base of the cloud where it has the same value as the surface precipitation. 

Beneath the cloud base the precipitation rate is the same as the surface.  

 

Stratisform clouds have a different profile. The cloud is divided into an upper and a lower 

part.  The cloud base is at 90% of surface pressure, cloud middle is at 80% and cloud top is 

at 50%.   The precipitation varies linearly from the base of the cloud to a point x in the 

middle of the cloud. The value of x depends on the medium and low cloud amounts, and is 

given by 

 

lowmed

med

AA

A
px

+
= 0     Equation 2-23 

 

Amed and Alow is the fractional coverage of the low and medium cloud cover and p0 is the 

surface precipitation rate. The precipitation varies linearly again from the point x to the top 

of the cloud where it has a value of zero. A diagram of the precipitation profile can be seen 

in Figure 2-11.    

 

The scavenging coefficient used in the model is taken from the work of Brandt et al., 

(2002).  In this parameterisation the scavenging coefficient is independent of the particle 

size and is proportional to the precipitation rate such that 
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BAP=Λ  

 
   Equation 2-24 

where A=8.4 x 10
-5
 and B=0.79 for both convective and large scale precipitation. The units 

of precipitation are in mmhr
-1
.  In chapter 3 the effect of using a size dependent scavenging 

coefficient is tested.  

 

 

 

Figure 2-11 The vertical profile of precipitation for convective and large scale 

precipitation taken from Lunt (2001). 

 

ERA-40 six hourly large scale precipitation, convective precipitation, low cloud and 

medium cloud cover data is downloaded from the ECMWF website 

http://data.ecmwf.int/data/d/era40_daily/. The data is interpolated from a 2.5 x 2.5 grid to a 

T42 spatial resolution. 

 

2.6 Optimising TOMCAT  

The most computationally intensive part of the LPJ-dust model is the transport component. 

This is because the tracer mass is transported by advection, convention and diffusion on a 

hourly basis in 3 dimensions.  Therefore, several actions are taken to ensure the TOMCAT 

runs as fast as possible. A modification is made to the TOMCAT source code in order to 

speed up the simulation time. In the original source code a convection/diffusion matrix is 

defined.  This matrix contains values by which the tracer mass is multiplied by, to move it 

into or out of a grid box by convection and diffusion. The matrix is written the disk every 
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six hours and read back into memory every hour. The reading and writing of this variable 

to disk is not efficient but the code was originally written this way because of limitations in 

memory on older machines. The source code is changed so that the matrix is stored in 

memory instead of reading and writing to the disk. The Appendix contains the 

modifications to the source code.  To verify that the change does not cause an error the 

output dust fields are compared before and after this change is made.  Storing the 

convection/diffusion matrix in memory gives a 10% reduction in the simulation time.  

 

A single TOMCAT simulation can transport several tracers at a time. As the tracers do not 

interact with each other the simulations can be divided up so that one TOMCAT simulation 

contains one tracer. Transporting one tracer per TOMCAT simulation instead of eight 

tracers per simulation gives a 65% reduction in the simulation time. A further 20% 

improvement in the simulation time is obtained by running TOMCAT using openmp.  

 

2.7 A base line dust simulation  

A flow chart of the dust model is shown in Figure 2-12.  A dust cycle simulation is run for 

the years 1987 to 1989. These years are chosen so that surface emissions could be 

compared to the work of Tegen et al., (2002). Figure 2-13 shows the annual mean dust 

source areas calculated using LPJ vegetation cover, soil moisture and snow depth data 

using Equation 2-10. Figure 2-14 shows the corresponding surface emissions.  

 

The model predicts dust emissions from North America (the great Basin, Mojave and the 

Sonoran deserts). In South America, the model predicts dust emissions from the Atacama 

Desert which extends up the coast of Chile and in Patagonia in south central Argentina. In 

Africa the model predicts dust emission from the Sahara in the north and the Namib and 

the Kalahari deserts in the south. There are also dust emissions from Somalia in east 

Africa. In Asia there are dust emissions from Gobi desert in the East Asia and the 

Taklimakan and Kara-Kum deserts in central Asia. In India and Pakistan dust emissions 

from the Thar Desert are simulated. Dust emission from the Australian continent and the 

Arabian Peninsula are also predicted by the model. High latitude dust emissions can be 

seen in the Canadian Arctic and in North West Russia.  

 

The amount of dust removed by wet and dry deposition and the total deposition (wet +dry) 

is shown in Figure 2-15.  The total dust deposition is largest close to the source regions.  
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Dry deposition is dominant close to the dust source regions because of the abundance of 

heavy particles at the source.  In addition to this, there is generally a lack of precipitation in 

these regions which means dry deposition is the prevailing mechanism for removal. In 

contrast wet deposition dominates in areas far from the source.  

 

The model shows that dust emitted from North Africa is transported westward across the 

Atlantic Ocean. Asian dust is transported eastward over the Pacific Ocean. Australian dust 

is transported northward across the Indian Ocean and south-eastwards towards New 

Zealand.   

 

The annual mean surface emissions predicted by the new dust model are 1944 Mtyr
− 1 

(averaged over the years 1987-1990). Table 2-2 shows a comparison between the annual 

mean emissions estimated by other dust cycle models.  The surface emissions lie within the 

range predicted by the other models. However, this range varies by a factor of 2. Although 

all the models agree that the highest emissions come from North Africa there are regional 

differences in the estimates of the surface emissions between the models. The baseline 

simulation presented here has not been validated against measurement data. In then next 

chapter the LPJ-dust model will be tuned to observational data. The tuning will aim to find 

the threshold parameters and sub-cloud scavenging scheme which optimises the fit 

between the model output and observational data.    
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Figure 2-12  A flow chart of the dust cycle model 
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Figure 2-13 Annual mean dust source areas calculated using LPJ vegetation cover, 

soil moisture and snow depth data for the year 1987. The threshold limits used to 

calculate this are FPAR=0.5, snow depth =0.05m, soil moisture=20mm 

 

 

 

Figure 2-14  Annual mean dust flux calculated using LPJ source areas for the year 

1987 (A logarithmic scale has been used)  
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Figure 2-15 The amount of dust removed by dry deposition (top left), convective 

precipitation (top right), large scale precipitation (bottom left) and the total dust 

removed (bottom right) for the year 1988.  

 

 

 Africa Asia America Australia Global 

 North  South  Arabia Central  East North South   

This work 60% 5%  10% 11%  1%  3% 10% 1944 

          

(Tanaka and 

Chiba 2006) 

58% 3%  12% 8%  11% 0.1%  2% 6% 1877 

(Werner et al. 

2002) 

65%  10%  9%     5% 1060 

(Luo et al. 

2003) 

67%   7%  3%   8% 1654 

(Zender et al. 

2003a) 

66%  28%   0.5% 2%  3% 1490 

(Ginoux et al. 

2004) 

69%   24%   0.4% 3% 3% 2073 

(Miller et al. 

2004) 

51%   4% 16%  5% 5%   15% 1019 

 

2-2 Comparison of the annual mean dust emissions categorised by region between this 

study and other studies. The dust emissions are in units of Mt yr
− 1
. This table has 

been taken from the work of Tanaka and Chiba (2006) and extended. 
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3 Dust model tuning 

The previous chapter showed that the basic LPJ-dust model predicted annual mean surface 

emissions of 1944 Mtyr-
1.  

This lies within the range of estimates predicted by previous 

dust modelling studies, however, theses estimates vary by a factor of 3 (see the dust model 

inter-comparison Table 1.5-1).  

 

Uncertainty in the surface emissions can arise from the meteorological data used to drive 

the model.  The surface emissions are forced using ERA-40 6 hourly wind speed data.  

Measurements of wind speeds over southwest Asia have been found to exceed 40ms
-1
 

(Middleton 1986) . According to the ERA-40 data maximum wind speeds in this region 

reach only 27ms
-1
. The ERA-40 reanalysis data requires data from meteorological stations 

which are sparsely distributed in remote dust source regions. This means that the 

reconstructed wind speeds may be less accurate in regions where there are little or no 

meteorological stations (Trenberth and Olson 1988).   

 

Uncertainty in the surface emissions also arises from the way in which the soil type is 

described. This is because the soil type determines the size of particles available for dust 

entrainment. The LPJ-dust model uses the Zobler soil texture map (Zobler 1986) to 

describe the soil type. This map does not include different soil types for preferential source 

regions in which highly erodible alluvium sediment has accumulated. Furthermore, the 

data does not account for regions where the soil is compacted, cemented or crusted. Dust 

emissions will not occur in these regions even if the wind speeds are very high.   

 

The threshold parameters used to calculate the surface emissions are another source of 

uncertainty in the LPJ-dust model.  It was seen in Chapter 2 that a threshold limit for 

FPAR, soil moisture, snow cover and threshold friction velocity was required to calculate 

surface emissions.   

 

Values for the threshold friction velocity for particles of different sizes have been 

measured in wind tunnel experiments (Bagnold 1941; Gillette 1977; Shao and Raupach 

1993), however, less is known about the threshold limits for vegetation cover, soil moisture 

and snow cover.  
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A study by Kimura et al., (2009) found dust outbreaks occurred when vegetation cover was 

below  18%, soil moisture  (ratio of surface soil water content to the field capacity (θr)) 

was greater than 2 with wind speed ≥ 7 m s
− 1  

and θr < 0.2 with wind speed  ≥ 9 m s
− 1
 . 

This study was carried out over the Loess Plateau in East Asia using NDVI data, wind 

measurements from surface synoptic observations and a three layer soil model to calculate 

soil moisture.   

 

Using threshold limits from an observational study such as Kimura et al., (2009), in the 

LPJ-dust model, would have limitations. 18% vegetation cover calculated from NDVI data 

may not be comparable to the density of vegetation associated with LPJ FPAR. Indeed, in 

chapter 2, it was seen that LPJ systematically overestimated FPAR compared to remote 

sensing derived FPAR from SeaWiFS. The study was carried out in the Loess Plateau in 

East Asia and considered heavy loam, medium loam, light loam, sandy loam and sand soil 

types. This may not be applicable to other regions where the soil type is different.  

 

A modelling study by Lunt and Valdes (2002) showed that choice of threshold limits for 

vegetation cover, soil moisture, and threshold friction velocity affected the atmospheric 

dust loading. The sensitivity of the atmospheric dust loading model to the threshold values 

varied regionally.  It was shown that increasing the LAI threshold, obtained from the 

BIOME4 model, from 1.2 to 2 increased the total atmospheric dust loading by a factor of 

1.6 with the most sensitivity observed in Australia. Similarly, reducing the soil moisture 

threshold from 10% to 4% decreased in the total column loading by a factor of 0.71 with 

most sensitivity seen over Patagonia. A weak sensitivity was found between the total 

column dust loading at high latitudes and snow cover. When the threshold friction velocity 

was increased from 0.4 to 6ms
-1
 the total column loading increased globally by a factor of 

19.  Clearly, the choice of values for the threshold limits in a dust model will have a large 

impact on both the surface emissions and the total dust loading.  

 

A way to reduce the uncertainty in the threshold values used to calculate the emissions is to 

perform a model tuning.   Tuning involves running the model using different values for the 

threshold parameters to optimise the fit between the model predictions and the 

observational data.  Dust model tuning has not been carried out before.  However, the 

availability of increased computing resources has made it possible to carry out ensemble 

simulations such as this.  
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Different strategies are available to tune the model.  An approach taken by Jones et al. 

(2005) is to iteratively tune the model. They tuned the FAMOUS OAGCM so that it could 

reproduce the behaviour of HadCM3. FAMOUS uses the same physics and dynamic 

processes as HadCM3 but has a reduced horizontal and vertical resolution and a longer 

time step making it run 10 times faster. The iterative tuning was carried out by perturbing 

one parameter at a time by ±10% of its best estimated value.  The performance of the 

simulation was compared to a control experiment and assigned a skill score. They 

calculated how the skill varies as a function of each parameter. This is then used to decide 

which direction the parameter needs to change for the next model run in order to increase 

the model skill. By doing this they iterated towards the model configuration which 

maximised the skill score.  

 

Another approach to model tuning has been to select values for tuneable parameters using 

Latin Hypercube Sampling (McKay et al. 1979). This technique divides each tuneable 

parameter into equal intervals (N) of equal probability (1/N). One sample is selected at 

random from each interval and matched up randomly with a sample selected for another 

parameter. The advantage of this technique over randomly choosing values is that it 

ensures that all regions of parameter space are evenly sampled.  

 

This approach has been taken by Edwards and Marsh (2005) to tune parameters in a 3-D 

ocean climate model. The objective of this tuning was to calculate a spread of model 

predictions for the global mean warming due to uncertainty in the model parameters.  

 

Latin Hypercube Sampling has also been used by Schneider von Deimling et al. (2006) to 

determine the uncertainty in the climate sensitivity.  This is defined as the change in the 

global-mean equilibrium surface air warming caused by a doubling of doubling of CO2. 

They tuned parameters in the CLIMBER-2 (Petoukhov et al. 2000) intermediate 

complexity climate model.   Ensemble simulations for the LGM were run and proxy data 

for sea surface temperatures were used to constrain the model. By doing this, they could 

estimate the uncertainty in the climate sensitivity caused by uncertainty in the model 

parameters.  

 

More complex algorithms have been used to tune Earth systems models such as the 

Kalman filter (Annan et al. 2005) and the Kriging and Genetic Algorithm (Price et al. 

2007). The advantage of the Latin Hypercube Sampling technique is it can be easily 
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implemented. For this reason, it is used to tune the threshold limits for vegetation cover, 

soil moisture, snow cover and threshold friction velocity the LPJ-dust model.  

 

Another source of uncertainty in the LPJ-dust arises from the way in which physical 

processes are parameterised. This is called structural uncertainty.  The parameterisation of 

wet deposition is an example of this. In the LPJ-dust model wet deposition is 

parameterised by the process of sub cloud scavenging. This is calculated simply as a 

function of precipitation rate (Brandt et al. 2002).  

 

Sub cloud scavenging can be parameterised in different ways. The scavenging coefficient 

can be calculated as a function of raindrop size and particle-raindrop collision efficiency 

using the semi empirical relationship described by Slinn (1983). Alternatively,  many dust 

models have used an empirical parameter called the scavenging ratio to calculate the rate 

of dust removal by sub cloud scavenging (Tegen and Miller 1998; Tegen et al. 2002; 

Cakmur et al. 2006).  This is defined as the ratio of dust in collected precipitation divided 

by that in air. Measurements show that the scavenging ratio for submicron particles can 

vary from 500 to 1000 and is approximately 300 for larger size particles (Buat-Menard 

1986).  

 

Jung and Shao, (2006) examined the characteristics of four different sub cloud scavenging 

schemes within the framework of a dust cycle model. The choice of sub cloud scavenging 

scheme affected the ability of the model to accurately predict surface concentrations of 

dust at selected locations in Asia. Furthermore, the scavenging coefficient deviated by a 

factor of 1000 depending on the precipitation rate and particle size.  

 

The objective of this chapter is to improve the performance of the basic LPJ-dust model. 

The threshold limits used to calculate dust emissions are tuned using Latin Hypercube 

Sampling and alternative sub cloud scavenging parameterisations are tested.  The ensemble 

dust simulations are compared to observational data to assess which set of threshold values 

and removal scheme produces the best results.  

 

3.1 Tuning the threshold limits for surface emissions 

The threshold limits to be tuned using Latin Hypercube Sampling are the 1) FPAR limit, 2) 

soil moisture limit, 3) snow depth limit and 4) the threshold friction velocity. The model 
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calculates a different threshold friction velocity for each particle size using the semi-

empirical relationship from Iversen and White (1982). The velocities are modified using 

the threshold friction velocity scale factor (TFVSF). Tuning TFVSF enables the threshold 

friction velocities to be tuned. 

 

To select the values for the threshold limits using Latin Hypercube Sampling, the 

minimum and maximum range of each parameter and the total number of experiments 

must be known. It was decided to generate 20 sets of surface emissions using the threshold 

limits determined from Latin Hypercube Sampling. An extra set of surface emissions is 

calculated using the threshold limits for the baseline experiment in Chapter 2. This totals 

21 sets of surface emissions. These are combined with three removal schemes giving a 

total of 63 experiments. The reason for carrying out this number of experiments is because 

of file space restrictions on the University of Bristol compute cluster. To avoid reading and 

writing large amount of data across the network the simulations were run on local nodes on 

the cluster which had a limited space for storing input and output data. This is also the 

reason why the tuning experiments are only run for 3 years (1987-1989).  

 

These particular years are chosen for two reasons. The first is because Tegen et al., (2002) 

chose this time period to study so a comparison of the surface emissions predicted by the 

LPJ-dust model could be made with the work presented in that publication who show 

emission for the year 1988. The second reason is because there is good coverage of surface 

concentration measurements from the University of Miami aerosol network (J. Prospero D. 

Savoie, personal communication) over this period which is used to test the performance of 

the model.  

 

The surface emissions are compared to another model (Tegen et al. 2002) to estimate the 

minimum and maximum range for the tuneable parameters. The saltation and sandblasting 

component of this model is used in the LPJ-dust model. The Tegen et al., (2002) has also 

has been found to give realistic results when compared to TOMS aerosol index and 

deposition rates. The Tegen et al., (2002) model is run for the year 1987 and the annual 

mean surface emissions are calculated.  The LPJ-dust model is run using extreme values 

for the threshold limits for the year 1987 and the annual mean surface emissions are 

compared to that predicted by the Tegen et al., (2002) model.  
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The FPAR threshold range chosen is 0.2-0.5.  Choosing values lower than 0.2 leads to very 

little dust emissions in South America, North America, South Africa and Australia.  

Choosing an FPAR threshold greater than 0.5 leads to dust emissions from highly 

productive grass lands where C4 grass is present.  

 

The soil moisture threshold range chosen was 10mm to 25mm. The soil moisture refers to 

the water contained in the upper soil layer in the LPJ which has a depth of 0.5m. Choosing 

values lower than 25mm leads to an under prediction of dust emissions from central Asia, 

Australia and North America. The upper bound was selected so as to include emissions 

from the boundaries of the deserts, for example Sahel in North Africa.    

 

The snow depth range chosen is 0.01m to 0.1m. Choosing a value less than 0.01m gives 

rise to an abundance of dust emission at high latitudes in winter. Using a snow depth 

greater than 0.1m eliminates dust emission from Gobi desert.  

 

The TFVSF range is 0.4-1. This is determined on the basis of the total annual mean dust 

generated. Choosing a value of 0.4 for the TFVSF gives annual mean dust emissions of 

3000 Mtyr
-1
 which is the upper estimate predicted by other dust modelling studies that has 

been reposted in literature (Tegen and Fung 1994; Mahowald et al. 1999). Choosing a 

value of 1 for the TFVSC means the threshold friction velocities are not scaled. This 

results in annual mean dust emissions of 60 Mtyr
-1
.   

 

 

 

Figure 3-1 shows the variable space sampled for each parameter using Latin hypercube 

sampling. The threshold limits used to calculate the six hourly surface emissions are listed 

in Table 3-1. Because each parameter is randomly paired with another parameter, repeating 

the selection process would result in different values for the threshold parameters.  
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Figure 3-1 Variable space sampled using Latin Hypercube Sampling for the four 

threshold limits used to determine surface emissions  

 

 

Experiment 
number 

FPAR 

(%) 

Soil 
moisture 
(mm) 

Snow 
depth 
(meters) 

Threshold 
wind 
scale 
factor 

Range 0.2-0.5 10-25 0.01-

0.1 

0.4-1 

1  0.50 0.20 0.01 0.66 

2 0.37 7.79 0.10 0.55 

3 0.23 11.09 0.05 0.80 

4 0.32 13.56 0.07 0.93 

5 0.21 21.50 0.02 0.46 

6 0.46 15.75 0.06 0.41 

7 0.36 18.47 0.05 0.71 

8 0.30 18.82 0.02 0.99 

9 0.39 22.99 0.01 0.46 

10 0.28 11.68 0.07 0.58 

11 0.47 24.18 0.06 0.51 

12 0.33 9.49 0.08 0.90 

13 0.25 23.88 0.03 0.73 

14 0.24 16.86 0.04 0.60 

15 0.49 10.53 0.00 0.68 

16 0.35 19.92 0.01 0.66 

17 0.40 14.93 0.04 0.78 

18 0.41 17.04 0.08 0.96 

19 0.44 21.24 0.09 0.87 

20 0.43 8.65 0.03 0.82 

21 0.27 12.41 0.09 0.64 

 

Table 3-1 Threshold limits used to determine source areas. Experiment 1 corresponds 

to the threshold values used for the basic LPJ-dust simulation described in the 

Chapter 2.  Experiments 2-21 correspond with threshold limits generated by Latin 

Hypercube Sampling.    
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3.2 Sub-cloud scavenging schemes 

Three sub-cloud scavenging parameterisations are tested. The first parameterisation 

estimates the scavenging coefficient as a function of the precipitation rate. This 

parameterisation is taken from the work of Brandt et al., (2002) and has been described in 

section 2.5.2.  

 

The second and third sub-cloud scavenging schemes are based on the semi-empirical 

expression for the aerosol droplet collision efficiency described by (Slinn 1984). The 

collision efficiency is calculated as   
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(Seinfeld 1998). Re is the Reynolds number, Sc is the Schmidt number, St is the Stokes 

number, φ is the ratio of the particle diameter to the drop diameter and ω is the ratio of the 

water viscosity to air viscosity.  

 

The scavenging coefficient is calculated from the collision coefficient by assuming that all 

the rain droplets have the same size such that 

 

dropletD

Ep0

2

3
=λ      

 

Where Ddroplet is the rain droplet size and p0 is the precipitation rate.  The scavenging 

coefficient is calculated for a small size rain droplet with diameter 0.5mm and a larger rain 

droplet with diameter 2mm. These values are taken from measurements of rain droplets in 

stratisform rain with a precipitation rate of approximately 1mmhr
-1
. (Pruppacher 1981) 

  

Figure 3-2 shows the scavenging coefficient calculated for the three schemes using a 

precipitation rate of 1mmhr
-1
. The straight line corresponds to the first parameterisation in 

which the scavenging coefficient is independent of particle size. The size dependent 

schemes have a hook shaped curve which indicates that scavenging is efficient for very 

small and very large particles. For very large particles the process of inertial impact is 

important for the removal while Brownian diffusion is important for very small particles.   

However, for particles in between the scavenging is not as efficient. This minimum is 
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called the Greenfield gap and effects particles in the region of 0.1µm diameter.  It can be 

seen that the larger rain droplet has a higher scavenging coefficient than the smaller droplet 

size. This is because the big droplet sweeps out a larger volume as it falls than the smaller 

droplet removing more dust on its’ descent.   

 

 

Figure 3-2 Comparison between the scavenging coefficients for three different wet 

deposition schemes. The dashed lines corresponds is the size dependent removal 

schemes (Slinn 1983) while the fixed line corresponds to the scheme fixed removal 

(Brandt et al. 2002). A precipitation rate of 1mmhr
-1
 is used to calculate the 

scavenging coefficient. 

 

 

Table 3-2 lists the collision efficiency for each particle in the model assuming a rain drop 

diameter of 0.5mm and 2mm and precipitation rates of 1mmhr
-1
. The table shows that dust 

particles with diameter greater than or equal to 13.8µm are removed with 100% efficiency 

in the LPJ-dust model.  

 

 

Dp (µm) 

 

0.17 0.5 1.51 4.57 13.8 41.69 125.89 380.19 

0.5mm 3.9x10
-4
 

 

3.3x10
-4
 1.2x10

-3
 6.5x10

-1
 1   1 1 1 

2.0mm 5.6x10
-5
 

 

8.6x10
-5
 4.1x10

-1
 9.0x10

-1
 1 1 1 1 

 

Table 3-2 Collision efficiency between a falling rain droplet of size 0.5mm and 2mm 

assuming a precipitation rates of 1mmhr
-1
. Values of 1 mean dust is removed with 

100% efficiency.     
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As mentioned previously 63 tuning experiments are carried out. The experiments are run 

for the years 1987-1989. Data from the first year (1987) is discarded in the analysis as the 

model is allowed 1 year to spin up. The amount of dust removed by wet and dry deposition 

and the surface concentrations are output daily.  

 

3.3 Target datasets 

Three datasets are used to evaluate the performance of the experiments. Two of these 

datasets contain dust deposition rates and one contains surface concentration data.  

 

The first deposition dataset is the Dust Indicators and Records of Terrestrial and MArine 

Palaeoenvironments (DIRTMAP version 2) (Kohfeld and Harrison 2001). DIRTMAP data 

has been used to validate many dust cycle models (Mahowald et al. 1999; Lunt and Valdes 

2002; Tegen et al. 2002; Werner et al. 2002; Mahowald 2006; Yue et al. 2009). This 

dataset contains dust deposition data from ice cores, marine sediment cores, sediment traps 

and loess data at various locations around the globe. DIRTMAP data is downloaded from 

the publically available website 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/loess/dirtmap/version2/.  

 

Dust deposition rates are derived from ice core measurements by combining measurements 

of particle concentration in ice with estimates of ice accumulation rates. The concentration 

of dust particles in ice is measured using several techniques. These techniques include laser 

light scattering, using atomic absorption to determine the Aluminium concentration or 

using Coulter counter measurements of number particle concentration. The error in the 

deposition rate is associated with the uncertainty in the estimate of the ice accumulation 

rate.  

 

The DIRTMAP dataset also contains dust deposition estimated from sediment traps and 

marine sediment cores. A sediment trap is an instrument used to measure the quantity of 

sinking particulate matter in the ocean. The fraction of matter containing dust is calculated 

by extracting the organic carbon, carbonate and opaline components from the total 

particles. Marine sediment cores are samples taken from the ocean floor. The dust flux is 

calculated by measuring the dust fraction in the core and combining this with the 

sedimentation rate of the core. The dust fraction is found by extracting the carbonate and 
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opaline components of the core. Most cores are taken from the open ocean to avoid 

contamination from biogenic debris from rivers run off.   

 

Dust deposition rates obtained from loess deposits are excluded in the analysis because 

there is evidence that they can be eroded (Derbyshire 2000) which would lead to unreliable 

estimates of deposition rates.  

 

The second deposition dataset used for the model validation has been compiled by Ginoux 

et al., 2001. This consists of 16 measurement sites.  The majority of the measurements 

come from the sea/air exchange program (SEAREX). This was a program established to 

monitor the transport of aerosols over the Pacific Ocean. Dust data collection in the North 

Pacific network started in early 1981 and in the southern Pacific in 1983. Dust deposition 

was measured using a conical funnel. The wet deposited parties fall into the funnel while 

the dry deposited particles settle on the outside of the funnel. The sample is filtered 

through a nylon mesh to remove debris and analysed for its Aluminium content.  

 

The Ginoux et al., (2001) dataset also contains dust deposition rates measured from a high 

resolution ice core in the Alps in which Aluminium and Calcium record have been 

analysed to determine the dust composition. 13 out of the 16 sites in the Ginoux dataset 

have been taken over the period 1980-1990 which coincides with the time the dust model 

is run. The Ginoux data has been used to evaluate the performance of several dust models 

(Ginoux et al. 2001; Luo et al. 2003; Zender et al. 2003a; Zender et al. 2003b) 

 

The third target dataset is surface concentration measurements from the University of 

Miami aerosol network (J. Prospero D. Savoie, personal communication).  The network 

measures surface concentrations of dust at a number of different sites. All the sites are 

located at remote regions to avoid contaminating the measurement with dust from local 

sources. The longest dataset extends from 1965 to the present from Barbados. Before 1971 

there was no electrical power on the island and measurements were taken by suspending a 

nylon mesh net in the wind. After that, measurements were taken by passing air through a 

filter using a pump. The mineral dust content is determined by baking the filter at 500
o
C to 

remove the water soluble material. The remaining material on the filter is assumed to be 

mineral dust. A description of the measurement technique is contained in Prospero (1999).  
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The measurement data from this network is not available at all sites over all time periods. 

Complete data is available for the year 1989 at: Barbados, Bermuda, Miami, Mace Head, 

Midway Island and Izaña. The University of Miami surface concentrations data has been 

used to validate numerous dust cycle models (Ginoux et al. 2001; Lunt and Valdes 2002; 

Tegen et al. 2002; Luo et al. 2003; Zender et al. 2003a; Tanaka and Chiba 2006; Yue et al. 

2009).  

 

The monthly surface concentrations are used later in Chapter 4 to test if the model can 

predict the seasonal variability in surface concentrations. In chapter 5 the monthly 

measurements are also used to test if the model can predict inter-annual variability in 

surface concentrations.     

 

Figure 3-3 shows the spatial distribution of the DIRTMAP, Ginoux and University of 

Miami data. The Ginoux data provides coverage in parts of the mid-Pacific ocean where 

there is no DIRTMAP data. It also provides data on land in Spain, the Alps and in the 

Taklimakan desert. The DIRTMAP data provides good spatial coverage in the ocean, the 

Arctic and in Antarctica. The University of Miami data provides additional data in the 

North West Atlantic where there is a scarcity of deposition data.    

 

3.4 Results 

To evaluate which simulation gives the best overall result, the experiments are ranked 

using a skills score. The skills score ranks the performance of the simulations using the 

normalised root mean square error (NRMSE). The NRMSE is used as opposed to the root 

mean square error because the measurement datasets have different units.  The deposition 

data has units of (gm
-2
yr

-1
) while the surface concentration data has units µgm

-3
.  

 

First, the global tuning factor is calculated (T).  This is the value by which the data is 

adjusted by to minimise the normalised root mean square error (NRMSE). T acts to move 

the modelled data up or down so that it fits on the ideal 1:1 line with the least amount of 

scatter. T is calculated by iterating through a range of values for T from 0.1 in steps of 0.1 

to 100. The modelled data is multiplied by T and the value which minimises the NRMSE is 

selected and applied to the data.   

 

The NRMSE is calculated as follows  
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minmax oo

RMSE
NRMSE

−
=     Equation 3-1 

 

Where omax and omin are the minimum and maximum observed values and RMSE is the 

root mean square error calculated as   
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Where mi is the model data, oi is the observations and n is the number of data points.  

 

After T has been applied to the data the NRMSE associated with the DIRTMAP, Ginoux 

and Miami data is summed for each experiment to give a total NRMSE. The simulations 

are ranked according to the total NRMSE.  

 

Table A (see the appendix) lists the experiments ranked by the total NRMSE after the 

tuning factor has been applied. Lower values of the total NRMSE indicate less error and a 

better match with measurement data. Table A also lists the T values for each dataset.  

 

It can be seen from Table A that the best experiment is number 23 because it has the lowest 

total NRMSE. This experiment has threshold limits FPAR =0.37, soil moisture =7.79mm, 

snow depth =0.01m and TFVSF=0.55 and uses the size dependent removal scheme with 

rain droplet diameter 0.5mm. Incidentally, this experiment gives the highest correlation 

coefficient of all the experiments with monthly surface concentration data at Barbados.  

This is important as the longest continuous measurements of surface concentrations have 

been made at Barbados. The Barbados dust record is studied in further detail in Chapter 5. 

The un-tuned experiment ranks among the worst performing experiments, in 47
th
 place.  

 

Although not presented here, the same analysis was carried out using skills score based on 

correlation coefficient instead of NRMSE. Experiment number 23 ranked in the top 13% of 

all the experiments when correlation coefficient is used.  The NRMSE is a better metric to 

use for the skills core because it quantifies the error between the measurements and the 

model data. The correlation coefficient is a measure to which the model data is linearly 

related to the measurements but does not quantify the total error.  

 

Figure 3-4 shows the experiments ranked according to the total NRMSE. This is a 

graphical representation of the data from Table A (see the appendix). Experiments that use 
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the size dependent removal scheme using a rain droplet diameter of 0.5mm produce better 

results that the other two removal schemes.  

 

 

 

Figure 3-3 Location of DIRTMAP sites (blue), Ginoux data (Pink) and University of 

Miami data (Red).    

 

 

Figure 3-4  Experiments ranked according to the total NRMSE with the three 

validation datasets. Lower values of NRMSE indicate a better match with the 

measurement data. The removal schemes are designated by colour; the size 

dependent removal scheme with drop diameter 0.5mm (blue), the size dependent 

removal scheme with drop diameter 2mm (green) and the fixed scavenging schemes 

(red)  
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Figure 3-5 shows a comparison between the modelled deposition rates and the DIRTMAP 

data for source scheme 1, which is used in the un-tuned model and source scheme 2, which 

is used in the best experiment. The deposition rates predicted by the two source schemes 

and the three removal schemes are shown.  In all cases the model successfully reproduces 

the range of high and low deposition over four orders of magnitude. There is very little 

change in the simulated deposition rates when a different source scheme used.  However 

when the removal scheme is changed a notable different is observed.  

 

The best experiment seen in Figure 3-5 (a) is successful at predicting the very low dust 

deposition found ice core records from Greenland and Antarctica. This indicates that the 

size dependent removal parameterisation with droplet diameter 0.5mm is good at 

simulating the long range transport of dust to Antarctica. In contrast the un-tuned 

experiment seen in Figure 3-5 (f) underestimates dust deposition in the North Pacific, 

Arabian Sea and the North Atlantic which can be seen in the abundance of points below 

the 1:1 line. There is an improvement in the correlation coefficient of 0.70 to 0.76 between 

the un-tuned experiment and the best experiment.  

 

The T for each experiment is also shown in Figure 3-5. The removal scheme that uses a 

0.5mm rain droplet results in higher T values than the removal scheme that uses a 2mm 

rain droplet. This is reasonable as it is expected that the large rain droplet will remove 

more dust than the smaller drop size, therefore the simulated data needs to be adjusted by a 

smaller amount to match the measurements.   

 

Figure 3-6 shows a comparison with the Ginoux deposition data for the two different 

source schemes and three removal parameterisations. The best experiment seen in Figure 

3-6 (a) correlates well with the measurements (r=0.94). The correlation coefficient may be 

artificially high because of the dominance of the Taklimakan data point which is located 

close to an active dust source.  When this point is removed the correlation coefficient is 

0.90. This is comparable to Zender et al., (2003b) found a correlation coefficient of 0.52-

0.79 when the Taklimakan data point was removed.  The fixed scavenging scheme 

underestimates dust deposition to the North Atlantic, the South Pacific and the North 

Pacific. Estimates of dust deposition to these regions are improved when the size 

dependent removal scheme with droplet diameter 0.5mm is used.  
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Figure 3-7 shows a comparison between the simulated surface concentrations and the 

measurements from the University of Miami aerosol network. The un-tuned experiment 

(Figure 3-7 (f)) underestimates surface concentrations in the North Atlantic but this is 

improved in the best experiment (Figure 3-7 (a)). Unlike the other two datasets, the 

simulated surface concentrations show sensitivity to both the choice of source schemes and 

removal schemes. This can be seen by the changes in correlation coefficient between 

experiments which use the same removal scheme but different source schemes and vice 

versa. This shows that tuning the threshold values improves estimates of surface emissions 

at remote regions. As with the other two datasets, the size dependent removal scheme with 

the drop diameter 0.5mm produces the best results.  

 

Figure 3-8 shows the dust deposition fields for the three different sub cloud scavenging 

schemes. Source scheme 2 is used for each experiment so that the only difference between 

plates (a), (b) and (c) is the dust removed by wet deposition. The choice of sub cloud 

scavenging parameterisation does not have a large impact on deposition rates close to the 

source regions where dry deposition is the dominant removal mechanism.  However, away 

from the source regions differences are evident as wet deposition is more effective at 

removing dust at long distances from the source regions.   The size dependent removal 

scheme with droplet diameter 2mm and the fixed removal scheme produce more dust 

deposition downwind of the source regions than the fixed removal scheme with droplet 

diameter 0.5mm. This is seen over the North Pacific Ocean, the North Atlantic and the 

Southern Ocean.     
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Figure 3-5  Comparison between the modelled deposition rates and DIRTMAP data 

using source scheme 2 (left hand side) and source scheme 1 (right hand side) and 

three removal parameterisations. The location of measurement sites are denoted by 

colour; Greenland (green), Antarctica (blue), North Pacific (red), South Pacific 

(black), North Atlantic (magenta), South Atlantic (pale blue), Arabian sea (yellow).  

The global tuning factor and logarithmic correlation coefficients are shown. Plate (a) 

corresponds to the best experiment while plate (f) to the un-tuned experiment. 
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Figure 3-6 Comparison of modelled deposition rates against deposition data compiled 

by Ginoux et al., (2001). The plots show a comparison for three removal schemes 

using source scheme 2 (left and side) and 2 (right hand side). Sites are denoted in 

colour; North Pacific (red), North Atlantic (magenta), South Pacific (turquoise) , 

French Alps (purple 1), Spain (purple 2), Tel Aviv (purple 3) and the Taklimakan 

desert (purple 4). Plate (a) corresponds to the best experiment while plate (f) to the 

un-tuned experiment. 
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Figure 3-7 Comparison of simulated annual mean surface concentrations with data 

from the University of Miami aerosol network. The data points correspond to 

measurements made at 6 sites for the year 1989. The Barbados (asterix), Bermuda 

(triangle), Cape Grim (circle), Izana (square), Mace Head (star) and Miami (plus 

sign).  Plate (a) corresponds to the best experiment while plate (f) to the un-tuned 

experiment. 
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Figure 3-8 Comparison between simulated dust deposition fields, averaged over the 

year 1988 and 1989, when the three sub cloud scavenging schemes are used. Dust 

deposition referrs to the total dust removed by wet and dry deposition. Source scheme 

2 is used for each experiment.   
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3.5 Uncertainties in the estimates of the surface emissions 

The tuning factors for the best experiment are different for each target dataset. This results 

in different estimates for the annual mean surface emissions. These estimates range from 

1136Mtyr
-1
 (T=1, University of Miami), 3065 Mtyr

-1 
(T=2.7, DIRTMAP) and 4654 Mtyr

-1 

(T=4.1, Ginoux). This spread arises from a number of factors.  

 

The two deposition datasets measure dust deposition differently. Indeed, within the 

DIRTMAP and Ginoux datasets several different techniques are used to measure dust 

deposition. The techniques used also have uncertainties. Where deposition rates have been 

derived from ice core measurements, the ice accumulation rate is required to convert dust 

concentrations in ice core to units of deposition flux. The uncertainty in the ice 

accumulation rate may lead to an error in the values of the flux estimates. Errors in marine 

core data may be caused when ocean currents move sediment about.  

 

The uncertainty is also caused by the differences in temporal coverage of the three 

datasets. The DIRTMAP data represents deposition over a long period of time while the 

Ginoux data contains measurements from the 1980s which is closer to the simulation 

period.  Moreover, the University of Miami surface concentration data overlaps the 

simulation period exactly.  

 

In Chapter 5 a long dust simulation is run for the years 1958-2000.  The global tuning 

factor when comparing simulated deposition rates to DIRTMAP data is 0.93. This is closer 

to the value of T=1 calculated from the University of Miami data suggesting that a dust 

loading of 1136Mtyr
-1 
may be more likely.  

 

Another source of uncertainty is caused by the spatial distribution of the measurement data. 

The data points are distributed unevenly which means that some regions are weighted more 

than others. Each observation whether from DIRTMAP, Ginoux or the University of 

Miami datasets has been made at a point source and might not be representative of the 

surrounding area.  
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3.6 Conclusions 

This is the first time an objective tuning of a dust cycle model has been carried out. Tuning 

the dust model has resulted in improved estimates for the threshold parameters used to 

determine surface emissions and has identified the type of removal scheme required to 

predict the relative range of high to low deposition rates (and surface concentrations) close 

to and far from the source regions.  

 

There is still a large degree of uncertainty in the estimates of the annual mean surface 

emissions even after tuning the model. This is a result of constraining the simulated 

deposition rates (and surface concentrations) against multiple measurement datasets. The 

estimate of the annual mean surface emissions varies from 1136 to 4654 Mtyr
-1
 depending 

on which dataset the model output is compared to.   Revisiting Table 1.5-1 in Chapter 1, 

which lists the total surface emissions estimated by previous modelling studies, it can be 

seen that a value of 1136Mtyr
-1
 lies within the range of values reported in the literature 

while a value of 4654 Mtyr
-1-
 exceeds that estimated by previous work.  

  

A large range of estimates for the annual mean surface emission has been found by 

Cakmur et al. (2006) who used multiple datasets to constrain dust emissions. In that study, 

a dust cycle model was optimised against DIRTMAP data, surface concentrations data, 

aerosol optical depth data and aerosol optical depth retrievals from the AVHRR sensor. 

They estimated that the annual mean surface emissions varied from of 1000-3000Mtyr
--1
.  

 

There are places where improvements could be made to the model tuning. More 

measurement data could be used to assess the performance of the model. Measurement 

data close to the source region may be particularly useful. The majority of the 

measurements used in this tuning have been made in remote regions to minimise 

contamination from anthropogenic sources.  

 

Another possible way to improve the model tuning is to introduce a weighting system. 

Cakmur et al., (2006) applied a weighting system when using observational data to 

constrain dust emissions. The weighing system they used, however, was somewhat 

arbitrary. AERONET data was weighted twice as much as TOMS data, while DIRTMAP 

and Ginoux deposition data was weighted half as much as the surface concentration data 

from the University of Miami aerosol network.  Careful consideration would have to be 
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taken if a weighting system were to be introduced. This is because of inconsistencies 

between the spatial and temporal sampling used to produce each observational dataset.   

 

The threshold values for the best experiment and the size dependent removal scheme with 

droplet diameter 0.5mm will be used in Chapters 4 and 5. 
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4 Seasonal variability in the global dust cycle     

Much of what is known about the seasonality in the dust cycle originates from 

observational studies of dust storm frequencies (McTainsh and Pitblado 1987; Littmann 

1991; Goudie and Middleton 1992) and remote sensing data over dust source regions 

(Prospero et al. 2002; Kaufman et al. 2005; Evan et al. 2006). Section 1.3.1 contains a 

summary of some of these observational studies. The studies show that there is a strong 

seasonal cycle in dust emissions which varies from region to region.  

 

Dust cycle models are broadly able to predict the seasonal variability in surface emissions 

(Ginoux et al. 2001; Lunt and Valdes 2002; Tegen et al. 2002; Luo et al. 2003; Zender et 

al. 2003a; Tanaka and Chiba 2006; Yue et al. 2009). This has been determined by 

comparing simulated surface concentrations, down wind of the source regions, to in situ 

measurement data. The extent to which simulated surface concentrations agree with 

measurements, however, varies for individual models.  

 

No dust cycle modelling studies have been reported in the literature which address the 

question of which processes are responsible for the seasonality in surface emissions or in 

dust loading after transport has taken place.   Some dust cycle models may not be suited to 

this type of study because the seasonality in vegetation cover is not included (Lunt and 

Valdes 2002; Yue et al. 2009). In models where the seasonality in vegetation cover is 

included, the soil moisture used to suppress dust emissions is inconsistent with the 

vegetation cover. For example, in the work of Tegen et al., (2002) the BIOME4 model was 

used to predict the distribution of dust emitting biomes in conjunction with remote sensing 

NDVI to determine the seasonality in the vegetation cover.  ERA-40 reanalysis soil 

moisture data was used in the model to suppress emissions.  Similarly, Zender et al., 

(2002) used remote sensing derived monthly LAI to predict the distribution of vegetation 

cover combined with NCEP/NCAR volumetric water content to constrain dust emissions.   

 

In contrast to previous studies the LPJ-dust model may be particularly suited to study the 

cause of seasonal variability in the dust cycle because it simulates seasonality in vegetation 

cover, soil moisture and snow cover, each of which impact dust emissions. Furthermore, 

there is consistency between the vegetation cover and the hydrology.  
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There are two objectives in this chapter. The first is to evaluate how well the tuned LPJ-

dust model predicts seasonality in the dust cycle. A comparison is made between the 

simulated total column dust loading and Total Ozone Mapping Spectrometer (TOMS) 

aerosol index to test if the model can predict the spatial distribution of the total 

atmospheric dust loading for different seasons. The simulated monthly mean surface 

concentrations are compared to measurements of surface concentrations from the 

University of Miami aerosol network as another means of model validation.   

 

The second objective of this chapter is to investigate which processes control the 

seasonality in the dust cycle. The atmospheric dust loading is influenced by a number of 

factors. These include precipitation, which controls dust removal and soil moisture which 

inhibits dust emissions. The presence of snow, vegetation cover and surface wind speeds 

also influence dust emissions. It is possible then, that these factors also contribute to the 

seasonality in the dust cycle. For this reason sensitivity studies are carried out to 

investigate the extent to which wet deposition, surface wind speeds, soil moisture, snow 

cover and vegetation cover control the seasonal variability in the dust cycle in different 

regions.  

 

4.1 Experimental setup    

The LPJ-dust model is run for years 1990-2000 using threshold parameters and the size-

dependent removal scheme determined from the model tuning carried out in chapter 3. 

This period has been chosen because the majority of the surface concentration 

measurements from the University of Miami aerosol network have been made over this 

period. The simulated surface concentrations and the total column dust loading are output 

daily.  The total column dust loading is calculated by summing of the dust mass per unit 

meter in all 31 model levels. 

 

4.2 Results 

Figure 4-1 shows the seasonal variation in the simulated surface concentrations averaged 

over the simulation period 1990 to 2000. The highest surface concentrations are found 

close to the source regions in North Africa, Central Asia, China and Mongloia, Australia, 

South Africa, Patagonia and North America.  
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The model shows a latitudinal shift in the dust plume over the North Atlantic from DJF to 

JJA. This seasonal shift is associated with a change ITCZ which moves northwards in the 

JJA transporting dust to the Caribbean. In the DJF the ITCZ shifts southwards transporting 

dust to South America. The change in transport between the JJA  and DJF predicted by the 

model has been observed from remote sensing retrievals of dust loading (Prospero et al. 

2002; Kaufman et al. 2005; Evan et al. 2006).  

 

The model predicts an increase in surface concentrations in spring in Asia. This is 

particularly evident in the Taklimakan and the Gobi. The increase in surface concentrations 

in spring is consistent with observations of dust storm frequencies which have a maximum 

in the spring (Littmann 1991; Goudie and Middleton 1992; Wang et al. 2004). The model 

produces higher surface concentrations over Patagonia in DJF than during the rest of the 

year. This agrees with measurements of dust deposition rates over Patagonia which have 

been found to increase in DJF (Gaiero et al. 2003).  

 

In Australia, the surface concentrations are expected to peak in DJF when temperatures are 

highest, soil moisture is at its lowest and dust storm events are more frequent (McTainsh 

and Pitblado (1987). However, it can be seen that an increase in surface concentrations in 

Australia actually begin in SON which is earlier than expected. A closer inspection of the 

simulated emissions from Australia in Figure 4-2 shows that the increase occurs between 

September-January. The early onset of maximum dust emissions is because LPJ predicts 

minimum vegetation cover four months earlier than observed (See the comparison between 

the timing of the minimum FPAR from LPJ and SeaWiFS in Figure 2-3).      

 

It is not clear from Figure 4-1 how the surface concentrations change seasonally over 

North America and South Africa, so these regions are also discussed in further detail in the 

following section, in which the simulated dust loading is compared to remote sensing data.   

 

The annual mean surface emissions predicted by the model is 2660 ± 340Mtyr
1 
where the 

error refers to the standard deviation of the annual mean values. This value has been 

calculated over the period 1990-2000. This estimate is different from the value estimated in 

chapter 3, which was which 1136 Mtyr
1, 
 calculated over a 3 year period from 1987-1989.  

The values for the total surface emissions are comparable to previous modelling studies 

(see Table 1.5-1)    
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4.2.1 Simulated dust loading:  Comparison with TOMS  

In this section the simulated dust loading is compared to satellite derived data to provide a 

qualitative evaluation of the spatial distribution of the dust loading as it varies seasonally. 

The comparison is focused on five major dust producing regions; North Africa and the 

Arabian peninsula, South Africa, North America, South America and Asia. Australia is not 

included in the comparison because the model is unable to predict the seasonality correctly.   

 

The simulated dust loading is compared to TOMS aerosol index (Herman et al. 1997) 

obtained from the Earth probe satellite. The TOMS instrument measures radiation in the 

UV spectrum which is sensitive to the presence of aerosols such as black carbon, soot and 

mineral dust. TOMS aerosol index is calculated by dividing the measured UV radiation 

backscattered to space by the UV radiation backscattered to space in a pure Raleigh 

atmosphere such that   

calc

meas

I

I
AI

360

360
10log100=     Equation 4-1 

Where measI360  is the measured radiation at 360mn and calcI360  is the calculated radiance 

assuming a pure Raleigh atmosphere.   

 

The magnitude of the AI depends on a number of factors such as the optical properties of 

the aerosol, the thickness and height of the aerosol layer, the viewing angle of the sensor 

and whether cloud is present. It is worth noting that the TOMS AI data does not distinguish 

between natural mineral dust and other absorbing aerosols such as black carbon from a 

biomass burning.  
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Figure 4-1 Seasonal variation in simulated surface concentrations.  The seasons are 

defined as December-January-February (DJF), March-April-May (MAM), June-

July-August (JJA) and September- October-November (SON)    
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Figure 4-2 Simulated monthly surface emissions from the Australian continent. The 

emissions are summed over longitudes 100
o
E to 170

o
E and latitudes 50

o
S to 0

o
. 

Maximum emissions from Australia are expected in DJF. The model predicts 

maximum emissions commencing in August. This coincides with the period when LPJ 

simulates a minimum in vegetation cover.  

 

   

The TOMS AI data provides a useful qualitative tool to evaluate the model and has been 

used previously to map the location of major dust sources (Prospero et al. 2002).  TOMS 

data has also been used to monitor the inter-annual variability in dust transport from North 

Africa (Chiapello et al. 2005). The monthly composite TOMS aerosol index data for the 

year 2000 is downloaded from the NASA website 

(ftp://toms.gsfc.nasa.gov/pub/eptoms/data/monthly_averages/aerosol/).  The data has a 

spatial resolution of 1
o
 latitude and 1.25

o
 longitude.  

 

Figure 4-3 shows the total column dust loading over the North Atlantic predicted by the 

model in DJF and JJA and the TOMS aerosol index.  The model is able to predict the high 

dust loadings in JJA over North Africa, the Arabian Peninsula and the North Atlantic that 

is seen in the TOMS data. The latitudinal shift in dust transport over the North Atlantic in 

the DJF and the JJA caused by the movement of the ITCZ can be seen in the model and the 

observations. The TOMS data shows high dust aerosol loading just north of the equator in 

JJA which is not seen in the model. This is caused by smoke from biomass burning 

(Prospero et al. 2002).    
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The simulated total column dust loading and the TOMS AI for South America in DJF and 

JJA is shown in Figure 4-4. The model correctly predicts the high dust loading in the DJF 

in the Patagonian desert compared to JJA.  

 

The model does a reasonably good job at predicting the spring increase in dust loading 

over Asia compared to the TOMS data as seen in Figure 4-5. Observational studies 

suggests that the peak dust loadings in spring are caused by cold fronts emerging from 

Siberia which increases the frequency of wind speed events (Littmann 1991; Goudie and 

Middleton 1992; Wang et al. 2004).  

 

In North America, the model and the remote sensing data predict higher dust loading in 

spring than in winter. This can be seen in Figure 4-6. This is consistent with observational 

studies of visibility and total suspended particulates at sites in the northern US which show 

an increase in spring time (Orgill and Sehmel 1976).  

 

The simulated dust loading over South Africa in DJF and JJA and the TOMS data are 

shown in Figure 4-7. The model correctly predicts an increase in dust loading in the DJF 

compared to JJA.  High dust loadings are seen in the TOMS data in the west coast of South 

Africa in JJA. This is not seen in the model and is associated with biomass burning (Hao 

and Liu 1994; Prospero et al. 2002).  

 

 

 

Figure 4-3 Comparison of total column dust loading over the North Atlantic for the 

NH winter (December-January-February) and summer (June-July-August) 

compared to TOMS aerosol Index.   
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Figure 4-4 Comparison of dust modelled loading from Patagonia in DJF and JJA and 

TOMS AI data. Increased dust activity is seen in DJF in the model and the TOMS 

data.  
 

 

 

Figure 4-5 Comparison of simulated total column dust loading with TOMS AI over 

Asia in DJF and MAM. 
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Figure 4-6 Comparison of simulated total column dust loading with TOMS AI over 

North America in DJF and MAM. 

  

 

 

 

 

Figure 4-7 Comparison of simulated total column dust loading with TOMS AI over 

South Africa in JJA and DJF. 

 

 

4.2.2 Simulated surface concentrations: Comparison with measurements   

The comparison with the remote sensing data in the previous section provided a qualitative 

assessment of how well the model predicts seasonality in the dust loading. In this section a 
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quantitative evaluation is carried out. The simulated surface concentrations are compared 

to measurement data from the University of Miami aerosol network. The locations of the 

sites in the network are shown in Figure 4-8. The correlation coefficients between the 

simulated monthly mean surface concentrations and the measurements are listed in  

Table 4-1.  The measured and modelled surface concentrations are shown in Figure 4-9. 

Note that the simulated surface concentrations have been scaled in Figure 4-9 so that the 

seasonality can be seen more easily. To scale the data the modelled surface concentrations 

have been divided by a scale factor (shown in the plots) so that the mean modelled data 

matches the mean measurement data. The un-scaled data is shown in Figure 4-10.    

 

It can be seen from Figure 4-9 that the model is successful at predicting the timing of the 

maximum dust concentrations in JJA at Bermuda (r=0.9), Miami (r=0.87) and Barbados 

(r=0.84).  At Mace Head the model is unable to reproduce the observed seasonality in 

surface concentrations (r=0.13).  Measurements at Mace Head are only taken when the 

prevailing wind is from the west. This is to minimise contamination from local sources.   

North African dust is likely to arrive at the site from the East. It is possible that not all 

North African dust arriving at the site is sampled, which may also explain why the model 

estimates are 9 times higher than the measurements.   

 

The model under predicts the maximum concentrations in JJA at Izana in Tenerife (r=-

0.10). This site is close to the Saharan source. The poor correlation may be because the 

measurements are taken at an altitude of 2360m which corresponds to eight model levels 

above the surface in TOMCAT.  

 

At sites in the Pacific which are affected by Asian dust emissions the model is successful at 

predicting the maximum surface concentrations in spring at Funafuti (r=0.9), Hedo 

(r=0.79), Midway Island (r=0.55), Enewtak (0.51). At Cheju the correlation coefficient is 

low (r=0.3) but the model is able to predict the increase in dust concentrations in the 

spring.   
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Figure 4-8 The location of sites in the University of Miami aerosol network where 

monthly surface concentration data is available.  

 

 

At Nauru and Fanning Island, the model is unable to predict the spring maximum in 

surface concentrations seen in the measurements, but instead predicts a peak in August 

which is typical of the North African dust signal. The model over predicts the surface 

concentrations by a factor of 37 and 56 at these sites respectively. Returning to Figure 4-1 

it can be seen that in JJA some North African dust crosses the US to the northern Pacific. 

This suggests that the model over estimates the transport of North African dust to the 

Pacific. This may be caused by an underestimate of the amount of dust removed by wet 

deposition. A similar seasonal cycle in surface concentrations at Fanning Island was found 

in the work of Tegen et al., (2002) although no explanation was put forward for this.  

 

At Mawson in Antarctica the model predicts that maximum concentrations occur in the 

DJF which is consistent with the measurements.  This agrees with the maximum in surface 

emissions coming off Patagonia (see Figure 4-4) which contributes to the dust measured at 

Mawson.  At the other two Antarctic sites (Marsh-King George Island and Palmer) the 

modelled seasonality is poor.  

 

The measurements sites at New Caledonia and Norfolk Island, Cape Grim, America Samoa 

and Rarotonga are influenced by Australian dust emissions and the model is unable to 

predict the peak in surface concentrations observed in January-February at the majority of 

these sites. Instead, the model predicts that the maximum surface concentrations occur 
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between August and December. This is coincides with when LPJ predicts the timing of the 

minimum vegetation cover which is incorrect, as discussed in section 4.2.  

 

Figure 4-10 shows a comparison between the simulated surface concentrations and 

measurements when the modelled data is un-scaled.  At North Atlantic sites (Bermuda, 

Barbados and Miami) the model predicts the magnitude of the surfaces concentration well. 

The measurements lie within the standard deviation of the model estimates. The fact that 

the model predicts the magnitude of the surface concentrations well at Barbados is 

significant for the work carried out in chapter 5. This chapter investigates if decadal scale 

changes in vegetation cover in the Sahel can explain the variability in dust concentrations 

measured at Barbados.  

 

At sites close to the Asia source (Cheju and Hedo) the model is successful at predicting the 

magnitude of the surface concentrations. However, the model overestimates concentrations 

at sites in the remote Pacific (Oahu, Midway Island and Enwetak).  

Figure 4-9 shows that concentrations at these sites are over predicted by a factor of 15-30.  

 

To summarise, the key findings of the comparison with the TOMS aerosol index data and 

the surface concentration measurements;  

 

i. The model is successful at predicting the maximum in dust emissions from North 

Africa in JJA, in South America in DJF, in South Africa in DJF, in Asia in MAM and 

North America in MAM.   

 

ii. In Australia, the model predicts the timing of the maximum emissions between 

August and December rather than in DJF. This coincides with when LPJ predicts the 

timing of the minimum vegetation cover.   

 

iii. The model is able to predict the magnitude of the surface concentrations at sites 

influenced by North African dust and at sites close to the Asian source but 

overestimates the magnitude of the surface concentrations at sites in the remote 

Pacific by a factor of 15-30.    
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Site location  Correlation coefficient 

Bermuda 32.27N 64.87W 0.90 

Funafuti 8.5S 179.20W 0.90 

Miami 25.75N 80.25W 0.87 

Barbados 13.17N 59.43W 0.84 

Mawson - Antarctica 67.60S 62.50E 0.80 

Hedo Japan 26.92N 128.25E 0.79 

Yate–New Caledonia 22.15°S 167.00°E 0.65 

Midway Island 28.22N 177.35W 0.55 

Cape Point 34.35S 18.48E 0.54 

Enewtak 11.33N 162.33E 0.51 

Norfolk Island 29.08S 167.98E 0.39 

Cheju 33.52N 125.48E 0.30 

Oahu 21.33N 157.7W 0.16 

Mace Head 53.32N 9.85W 0.13 

Marsh-King George Island 62.18S 58.3W 0.06 

Rarotonga 21.25S 159.75W -0.04 

Izana 28.30N 16.5W -0.10 

Palmer - Antarctica 64.77S 64.05W -0.21 

Nauru 0.53S 166.95E -0.27 

Fanning Island 3.92N 159.33W -0.34 

Cape Grim 40.68S 144.68E -0.47 

American Samoa 14.25S 170.58W -0.68 

 

Table 4-1 Correlation coefficients between the simulated monthly mean surface 

concentrations and measurements from the university of Miami aerosol network.  

The sites are listed in order highest of correlation coefficient.   

 

 

4.3 Determining the cause of seasonality in the dust cycle   

The previous section showed that the LPJ-dust model did a reasonably good job predicting 

the seasonality in the dust loading and in surface concentrations in most regions with the 

exception of Australia. Now the model can be used to address the question of which 

processes control the seasonality in the dust cycle. Five sensitivity experiments are carried 

out to examine the influence of vegetation cover, soil moisture, snow cover, surface wind 

speeds and wet deposition on the seasonality of the dust cycle. In each sensitivity 

experiment, the factor concerned is held constant at its mean annual value, while all other 

factors are allowed to vary seasonally.  To calculate the seasonally invariant wet 

deposition, the model is run using annual mean convective precipitation, large scale 

precipitation, low cloud and medium cloud amounts. The annual mean values have been 

calculated from the 6 hourly ERA-40 reanalysis data.  
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Figure 4-9 Comparison between the simulated monthly mean surface concentrations 

and measurements from the University of Miami aerosol network. The pink line is the 

mean modelled surface concentrations over the period 1990-2000. The pink shaded 

area corresponds to the standard deviation of the modelled mean over the period 

1990-2000. The blue dashed line denotes the measurements.  Note the data has been 

scaled.  
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Figure 4-10 Comparison between the simulated surface concentrations and 

measurements from the University of Miami aerosol network. The plot is the same as  

Figure 4-9. This time, however, the data has not been scaled.  
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The experiment described in section 4.1 is used as the control experiment. The sensitivity 

experiments are run for the same simulation period (1990-2000) as the control experiment.   

 

Two experiments were run to test the impact of seasonal changes in surface wind speeds 

on the dust loading.  In the first experiment the surface emissions are generated using July 

ERA-40 10m wind speeds of each year while all other parameters in the model are allowed 

to vary seasonally. This is repeated using January ERA-40 10m wind speed data. The 

purpose of repeating the experiments using January and July wind speeds is so the model is 

forced by summer/winter wind speeds for the Northern and Southern Hemisphere.  

 

The analyses of the results are divided into three sections. The first section aims to 

understand the cause of seasonal variability in surface emissions. The second aims to 

understand the cause of seasonality variability in the dust loading after transport has taken 

place. The third section investigates which processes are responsible for the seasonality in 

the surface concentration measurements used in section 4.2.2 to validate the model.  

 

 

4.3.1 Seasonality in surface emissions    

This section analyses the experiments which use seasonally invariant vegetation cover, soil 

moisture, snow cover and surface wind speeds. These experiments are selected because 

these processes are used to calculate surface emissions in the model.  For each sensitivity 

experiment, the monthly surface emissions are averaged over the years 1990-2000.  The 

timing of the year when the surface emissions have a maximum value is plotted and 

discussed.  

 

To help gain a better understanding of the processes which cause the seasonality in the 

emissions the ERA-40 wind speed and precipitation over selected dust producing regions is 

also analysed. The selected regions of study are; the Sahara, the Sahel, China and 

Mongolia, Central Asia, South West Asia, North Africa, South America and South Africa.  

 

Three parameters are calculated for the analysis. Firstly, the monthly mean precipitation is 

calculated from the ERA-40 6 hourly large scale and convective precipitation. This is then 

averaged over each region.    

 



Chapter 4: Determining the cause of seasonal variability in the global dust cycle 

 107 

Secondly, the number of times in a month when the wind speed exceeds a minimum 

threshold for dust emissions is calculated from the 6 hourly wind speeds. This is summed 

over each region. The chosen minimum threshold friction velocity for dust emissions is 

2ms
-1
. This corresponds to the wind speed required to mobilise a particle with diameter of 

72µm. Higher wind speeds are required to mobilise larger and smaller particles (see Figure 

1-1).  In the case of larger particles, a higher threshold velocity is required because more 

energy is needed to overcome the force of gravity.  A higher threshold friction velocity is 

required for smaller particles because of strong inter-particle cohesion forces. It was found 

that using the number of wind events greater than 2ms
-1 
was more informative than using 

mean wind speeds. This is because periods when wind speeds exceed the threshold limit 

for emissions are averaged out.   

 

Thirdly, the monthly mean emissions are summed over the selected regions. The three 

parameters are calculated for each region for the years 1990 to 2000 and averaged.  The 

correlation coefficients between the monthly dust emissions, the number of times the wind 

speeds exceed 2ms
-1 
and the monthly mean precipitation are listed in Table 4-2.  The table 

also includes the months when the model predicts highest emissions and the months when 

dust storm frequency is highest. The dust storm data is taken from Table 4.7 in Goudie 

(2006) and is based on multiple observational studies of dust storms over different regions.       

 

Figure 4-11 shows the timing of the maximum surface emissions for each experiment over 

North Africa and the Arabian Peninsula. The control experiment shows that maximum 

emissions occur between January and July depending on which region is examined. 

Seasonal changes in wind speeds are responsible for the timing of the maximum emissions 

over most of North Africa, the Arabian Peninsula and Ethiopia, as can be seen by 

comparing the seasonally invariant wind speed experiments to the control.   

 

As expected, snow cover has no effect on the timing of the surface emission because no 

snow falls in this region. Soil moisture affects the timing of maximum emissions in the 

eastern Sahel at longitudes greater then 30
o
E.  

 

The number of wind events greater then 2ms
-1
, the monthly mean precipitation and 

emissions over the Sahara is plotted in Figure 4-12.  The maximum emissions in the Sahara 

occur between March and August. This coincides with months when the number of wind 

speed events greater than 2ms
-1 
is high.  
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It has been hypothesised by Engelstaedter et al., (2006) that the increase in emissions 

during JJA in North Africa is caused by an increase in wind speeds resulting from the 

North-South movement of the ITCZ.  In JJA, the ITCZ moves northwards between 15
o
N-

23
o
N and retreats back southwards during DJF. It was proposed that the crossing of the 

convergence belt may enhance the frequency of deep convention which increases surface 

wind speeds, resulting in more emissions.  

 

Figure 4-13 shows the number of wind events greater than 2ms
-1
, the monthly precipitation 

and emissions over the Sahel.  The emissions are highest in May just before the monsoon 

season which commences in June. The high precipitation rates between June and 

September are caused by the northwards movement of the ITCZ which brings rainfall to 

the Sahel.  A study by Engelstaedter et al., (2006) showed using TOMS AI data and 

precipitation data that rainfall during the Monsoon season reduces dust emissions. From 

Table 4-2 it can be see that dust emissions are correlated with wind speeds (r=0.84) and 

anti-correlated with precipitation (r=-0.68) which indicates that both processes are possibly 

important in determining the seasonality in dust emissions from the Sahel.    

 

Figure 4-14 shows the timing of the maximum surface emissions over Asia. Broadly 

speaking there are three areas where dust emissions occur in Asia; China and Mongolia, 

Southwest Asia (Afghanistan, Pakistan and India) and Central Asia (Caspian Sea and Aral 

Sea regions). The factors that control the timing of the maximum dust activity are different 

for each region.  

 

In Mongolia and China, Figure 4-14 shows that the dominant factor that controls the 

timing of the peak emissions in spring is the wind speeds. Vegetation cover does not 

appear to exert a strong control on the timing of the maximum emissions in this region, 

although a small impact is observed in Eastern Asia in which the control experiment shows 

emissions in March and April, but the seasonally invariant FPAR experiment shows no 

emissions. 
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 Correlation with wind  

events  

>2ms
-1
 

Correlation 

 with  

precipitation 

Timing of 

maximum  

 emissions 

Maximum dust storm 

frequency  

(Goudie 2006) 

     

Patagonia -0.24 -0.70 Nov-Jan - 

China & Mongolia 0.56 0.04 Mar-May April-May (Mongolia) 

Sahara 0.59 -0.48 Apr-Jun Apr-Aug 

Sahel 0.84 -0.68 Feb-Apr Nov-Mar 

Central Asia 0.60 -0.54 Jul-Aug May-Aug (Kazakhstan)  

North America 0.59 0.22 Mar-May Mar-May 

South West Asia 0.67 0.49 May-Jul May-Sep(Afghanistan) 

South Africa 0.17 0.33 Oct-Nov Aug-Nov (Namibia) 

 

Table 4-2 Column 2 lists the correlation coefficients between monthly emissions 

summed over each region and the number of times the ERA-40 wind speeds exceed 

2ms
-1
 summed over each region.  Column 3 lists the correlation coefficients between 

the monthly emissions summed over each region and the ERA-40 monthly mean 

precipitation averaged over the region. The period when the model predicts 

maximum emissions is listed in column 4. Column 5 lists the timing of maximum dust 

storm activity compiled by Goudie (2006) from multiple observational studies.  

 

 

The seasonality in snow cover causes maximum emissions at the boundary of the 

Taklimakan desert in December which would otherwise occur in March-April.   

 

Figure 4-15 shows that the maximum emissions in China and Mongolia in MAM coincide 

with an increase in the number of wind speeds greater then 2ms
-1
 and occurs just before 

JJA which brings rainfall to the region. A positive correlation (r=0.56) is found between 

the emissions and the number of times the wind speed exceeds 2ms
-1
. The correlation with 

wind speeds is in agreement with previous studies that have found the peak in dust storm 

activity in Asia is caused by cold fronts from Siberia which caused high wind speeds over 

China and Mongolia (Littmann 1991; Goudie and Middleton 1992). Husar et al.,(2001) 

studied the metrological conditions that contributed to two extreme spring time dust events 

in Asia and found that the low pressure cold fronts traversing Mongolia and China caused 

major storms which resulted in wind speeds in excess of 20ms
-1
. 

 

Figure 4-14 shows that in Southwest Asia, greatest activity occurs in May and June. Wind 

speeds and soil moisture influenced the seasonality in emissions. It can be seen in Figure 

4-16 that the maximum emissions occur in May-June after many months of low 

precipitation. The summer monsoon in July–August results in a sharp drop in dust 

emissions as precipitation increases the soil moisture. Another factor that increases the dust 

emissions in this region is the occurrence of thunderstorms. The highest thunderstorm 
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activity occurs during the summer monsoon season but there is also activity in May–June 

prior to the onset of the monsoon. This can be seen in the increase in the number of times 

the wind speeds exceed 2ms
-1 
in May-June.   

 

In Central Asia in the area to the south of the Aral Sea, the timing of the maximum 

emissions in November-December is controlled by wind speeds as can be seen from Figure 

4-14. To the north of the Aral Sea the presence of vegetation cover causes the maximum 

emissions to occur in November-December. This can be explained by the fact that the 

model simulates dry grasses in this region (see Figure 2-7). Dry grasses vary seasonally in 

the model which causes a contraction and expansion of the dust source area.  The 

minimum vegetation cover in this region occurs in December (See Figure 2-3) which 

coincides with the timing of the maximum emissions.  

 

To the north of the Aral Sea the seasonality in snow cover contributes to the timing of the 

maximum emissions in November-December while soil moisture affects the timing of the 

emission to the north and the south of the Aral Sea. It can be seen in Figure 4-17 that the 

Caspian and Aral Sea region emits dust continuously between April and December. The 

decrease in precipitation between May–October sees a corresponding increase in dust 

emissions.  

 

There are very few observational studies of dust storm frequencies in the Caspian and Aral 

Sea regions. TOMS AI data shows that the dust activity in this region starts in May and 

reaches a peak in June-July (Prospero et al. 2002). The model predicts a maximum activity 

in November–December which is different to the TOMS AI.  A possible explanation for 

the disparity is that this region is affected by human activity (Prospero et al. 2002).  During 

World War II the Amu Darya River which feeds into the Aral Sea was dammed, causing 

the Aral Sea to shrink, exposing large areas of sediments to erosion. It has been suggested 

by Prospero et al (2002) the TOMS AI detects dust emission from the dried out lake bed.   

 

In South America Figure 4-18 shows the area of most dust activity is concentrated around 

Patagonia. The maximum emissions occur in December and are controlled by soil 

moisture. This result is consistent with the findings of Lunt and Values (2002) who carried 

out sensitivity studies with a dust cycle model and found that Patagonian dust emissions 

were sensitive to the choice of soil moisture threshold. Figure 4-19  shows that the wind 

speeds in Patagonia are persistently higher than 2ms
-1
 throughout the year. Maximum 
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emissions occur in NDJ when precipitation is low. Conversely there are low dust emissions 

between March and October when precipitation is high. Dust emissions are strongly anti-

correlated (-0.70) with precipitation. The correlation with wind speeds is very low 

suggesting that the mechanism that controls the sensitivity in dust emission over Patagonia 

is precipitation, which in turn affects soil moisture.    

 

Figure 4-21 shows the timing of the maximum emissions from North America. In the 

southern high plains (in North West Texas and eastern New Mexico) maximum activity 

occurs in April and is influenced by wind speeds, vegetation cover and soil moisture.  This 

agrees with a study by Strout (2001) who carried out measurements of particulate mass 

with diameter less than 10µm (PM10) in Texas. It was found that the days with the highest 

PM10 concentrations occurred in spring and coincided with the frequency of winds greater 

4ms
-1
. They also found that wind speeds alone were not a perfect indicator of dust 

concentrations and that low soil moisture during spring also contributed to the high 

concentrations. No soil moisture data was available for this region but it was inferred from 

relative humidity measurements. The study also showed that in spring vegetation cover 

was sparse, although the vegetation referred to in the study was cotton, which is not 

simulated in LPJ.     

 

Figure 4-20 shows that maximum emissions over the North American occur in spring and 

coincide with a period when the number of times the wind speeds exceed 2ms
-1
 is high. A 

positive correlation of 0.59 is found between the wind speeds and the surface emissions. 

The results suggest that the seasonality in emissions in North America is controlled by the 

combination of vegetation cover, soil moisture and the frequency of wind speeds greater 

than 2ms
-1
. 

 

In central South Africa the model predicts maximum dust activity in June-August as seen 

in Figure 4-22.  Along the western coast, maximum emissions occur between December 

and January. Wind speeds contribute to the timing of the maximum emissions along the 

coastal regions and inland. Vegetation cover and soil moisture influence the timing of the 

emissions in the interior. LPJ predicts dry grass in the inland (Figure 2-7). This has a 

minimum in June-August (Figure 2-3) and coincides with the timing of the maximum 

emissions.   
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Figure 4-23 shows that increases in dust emission start in June and reach a maximum in 

November. This coincides with the months when the wind speeds most frequently exceed 

2ms
-1
 and after many months of low precipitation. The correlation with wind speeds in 

South Africa is low overall (r=0.17).  These results suggest that multiple environment 

factors control the seasonality in dust emissions from South Africa. Maximum emissions 

occur in inland in JJA due to the combined effect of low vegetation cover, low soil 

moisture and a high frequency of wind speeds greater then 2ms
-1
   

 

 

 

 

 

Figure 4-11 The timing of the maximum surface emission over North Africa and the 

Arabian peninsula for the control experiment and the sensitivity experiments 
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Figure 4-12 Monthly mean surface emissions, the number of times in a month the 

wind speeds exceed 2ms
-1
 and monthly precipitation data. The data has been 

averaged for the years 1990-2000 over the Sahara.  

 

 

Figure 4-13 Monthly mean surface emissions, the number of times in a month the 

wind speeds exceed 2ms
-1
 and monthly precipitation data. The data has been 

averaged for the years 1990-2000 over the Sahel.  
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Figure 4-14 The timing of the maximum surface emissions over Asia for the control 

experiment and the sensitivity experiments.    
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Figure 4-15 Monthly mean surface emissions, the number of times in a month the 

wind speeds exceed 2ms
-1
 and monthly precipitation data. The data has been 

averaged for the years 1990-2000 over China and Mongolia.  

 

 

 

Figure 4-16 Monthly mean surface emissions, the number of times in a month the 

wind speeds exceed 2ms
-1
 and monthly precipitation data. The data has been 

averaged for the years 1990-2000 over the south west Asia.   
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Figure 4-17 Monthly mean surface emissions, the number of times in a month the 

wind speeds exceed 2ms
-1
 and monthly precipitation data. The data has been 

averaged for the years 1990-2000 over central Asia.  
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Figure 4-18 The timing of the maximum surface emission for South America for the 

control experiment and the sensitivity experiments.  
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Figure 4-19 Monthly mean surface emissions, the number of times in a month the 

wind speeds exceed 2ms
-1
 and monthly precipitation data. The data has been 

averaged for the years 1990-2000 over Patagonia 

 

 

 

Figure 4-20 Monthly mean surface emissions, the number of times in a month the 

wind speeds exceed 2ms-1 and monthly precipitation data. The data has been 

averaged for the years 1990-2000 over North America. 
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Figure 4-21 The timing of the maximum surface emissions over North America for 

the control experiment and the seasonality experiments.  
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Figure 4-22 The timing of the maximum surface emissions over South Africa for the 

control experiments and the sensitivity experiments.  
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Figure 4-23 Monthly mean surface emissions, the number of times in a month the 

wind speeds exceed 2ms
-1
 and monthly precipitation data. The data has been 

averaged for the years 1990-2000 over South Africa. 
 

 

4.3.2 Seasonality in the atmospheric dust loading    

In this section the scope of the analysis is extended to understand which factors contribute 

to the seasonality in the dust loading after dust emissions have been transported from the 

source regions. Once again, Australia is excluded from the discussion because the model is 

unable to predict the seasonality correctly.  Results are presented for experiments which 

use seasonally invariant wind speeds, vegetation cover, soil moisture, snow cover and wet 

deposition. The daily total column dust loading from each experiment is output for the 

years 1990-2000 and converted into monthly averages. These monthly averages were used 

to construct the monthly climatology over the years 1990-2000. 

 

Figure 4-24 shows the timing of the maximum dust loading for the control experiment and 

the sensitivity experiments. The maximum dust loading in the control experiment at 

latitudes approximately greater then 30
o
N occurs in April-May. The previous section saw 

that that peak emissions from China and Mongolia occurred in April-May. This indicates 

that the timing of the dust loading is caused by the dispersion of Asian dust.  
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When the surface emissions are calculated using January wind speeds, the timing of the 

maximum dust loading in the northern hemisphere over Russia, Greenland and in the 

Canadian Arctic occurs in December. This is because of an increase in the Southern 

Hemisphere dust sources caused when the model is forced with Southern Hemipshere 

summer winds. An increase in the Southern Hemisphere dust signal is also seen at latitudes 

below 0
o
.   

 

It can be seen that changes in FPAR do not have a very large affect on the timing of the 

total column dust loading globally. The effect is small and localised in over Eastern China 

and over the north west of the Caspian Sea. In the previous section vegetation cover was 

found to affect the timing of the maximum emission in these areas. Vegetation cover does 

not have an impact of the timing of the dust loading far from the source regions, although a 

small impact is observed in Northern Greenland and in Northern Russia.  

 

Soil moisture affects the timing of the maximum total column loading over several regions.  

This can be seen in South Africa, central Asia and in the Sahel.  Soil moisture strongly 

influences the timing of the minimum dust loading over Patagonia and this has an impact 

of the dust loading over the southern Atlantic Ocean.     

 

The control experiment shows that maximum dust loading occurs in JJA over the North 

Atlantic. It is worth pointing out that North African dust is transported to the Pacific. This 

explains why dust concentrations at Nauru and Fanning Island were over estimated (see 

section 4.2.2) and why peak concentrations occurred in August, which is typical of the 

Saharan dust signal, rather than in March–April as the measurements show. This is another 

reason to suspect that the model overestimates the long range transport of North African 

dust.   

 

Wet deposition does not have a strong effect on the timing of the maximum dust over 

North Africa because precipitation rates are very low. It does have an impact on the timing 

of maximum dust loading over eastern China and the Caspian Sea region. The seasonally 

invariant wet deposition experiment shows an increase in dust loading with a JJA 

maximum over the North Atlantic, the Arctic Ocean, north Russia and Alaska. To 

understand why this is, it is necessary to look to the next section. Figure 4-25 shows the 

simulated surface concentrations for the sensitivity experiments together with 

measurement data from the University of Miami aerosol network. The experiment which 



Chapter 4: Determining the cause of seasonal variability in the global dust cycle 

 123 

uses seasonally invariant wet deposition results in much higher surface concentrations, 

indicating that less dust is removed from the atmosphere. Figure 4-24 (g) shows an 

increase in dust loading at high latitudes in the Northern Hemisphere with a maximum in 

JJA. This is consequence of less North African dust being removed by wet deposition. 

 

A similar process is responsible for the increase in dust loading in the South Pacific which 

has a maximum in JJA.  These results show that wet deposition controls the timing of the 

maximum dust loading at long distances from the source region.  

  

 

4.3.3 Seasonality in dust concentrations  

The model was validated using measurements of dust concentrations from the University 

of Miami aerosol network (section 4.2.2). This section aims to understand the cause of 

seasonality in these measurements. The monthly mean simulated surface concentrations 

predicted by the sensitivity experiments are compared to the measurement data. Only sites 

where the control experiment does a reasonably good job at predicting the surface 

concentrations are selected for the comparison. This was decided by choosing sites that 

have a correlation coefficient greater than 0.5 between the simulated surface concentrations 

and the measurements.  

 

Figure 4-25 shows the monthly mean surface concentrations for the sensitivity experiments 

and the measurements for the selected sites. It can be seen that seasonal changes in 

vegetation cover, surface emissions, wind speeds, snow cover, soil moisture and wet 

deposition affect the magnitude of the surface concentrations, but not the timing of the 

maximum and minimum concentrations. This suggests that the timing of the minimum and 

maximum surface concentrations at these locations is controlled by transport processes.  

  

The correlation coefficients between the simulated monthly mean surface concentrations 

for the sensitivity experiments and the measurements are listed in  

Table 4-3. The simulated surface concentrations at sites in the North Atlantic (Bermuda, 

Barbados and Miami) show no sensitivity to vegetation cover. 
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Figure 4-24 The timing of the maximum dust loading for the control experiment and 

the sensitivity experiments.   
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Figure 4-24 (continued) 
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This is reflected in the fact that there is no difference in the correlation coefficient between 

the control experiment and the experiment which uses seasonally invariant FPAR. There is 

also no sensitivity to snow cover which is to be expected as the dust arriving at these sites 

is influenced by North African dust emissions. The surface concentrations at the North 

Atlantic sites show a weak sensitivity to surface winds speeds, soil moisture and wet 

deposition. There is a small improvement in the correlation coefficient when these 

processes are allowed to vary seasonally.  

 

In contrast to the North Atlantic, sites in the Pacific (Midway Island, Hedo and Enewtak) 

show a weak sensitivity to FPAR. When the seasonal FPAR is included, the correlation 

coefficient improves by 8% at Hedo, 11% at Midway Island and 4% at Enewtak. The 

Pacific sites are also sensitive to the surface wind speeds. This is particularly evident at 

Hedo, close to the Asian source, where the correlation coefficient improves by 66% when 

the wind speeds vary seasonally.  

 

At Funafuti there is no sensitivity to vegetation cover or snow cover and a very weak 

sensitivity to soil moisture, winds speeds and wet deposition. This site is far from the 

Asian dust source and the seasonality is dominated by transport processes.  

 

The dust concentrations at Mawson in Antarctica are influenced by Patagonian dust. 

Strong sensitivity to soil moisture is seen at this site. This is confirms the results found in 

section 4.3.1 which showed that Patagonian dust emissions are controlled by precipitation 

and its subsequent influence on soil moisture.  The correlation coefficient improves from 

0.54 to 0.8 when seasonal variability in soil moisture is included in the model.  

 

4.4 Conclusions 

This first aim of this chapter has been to assess how well the LPJ-dust model predicts 

seasonality in the dust cycle. The comparison with TOMS AI shows that the model is 

successful at predicting the seasonality in total atmospheric dust loading over North Africa, 

Asia, North America, South America and South Africa. In Australia the model predicts the 

timing of the maximum surface emissions from August to December instead of DJF.  This 

coincides with when LPJ incorrectly predicts the timing of the minimum vegetation cover.  
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Site Control  January 

winds 

 

July 

winds 

 

FPAR 

 

Snow 

cover 

Soil 

moisture 

Wet 

deposition 

Bermuda 0.90 0.88 0.86 0.90 0.90 0.88 0.88 

Barbados 0.84 0.83 0.84 0.84 0.84 0.84 0.87 

Miami 0.87 0.81 0.84 0.87 0.87 0.85 0.80 

Hedo 0.79 0.18 0.32 0.73 0.82 0.82 0.45 

Midway 0.55 0.45 0.61 0.49 0.57 0.61 0.60 

Enewtak 0.51 0.62 0.67 0.49 0.52 0.54 0.76 

Funafuti 0.90 0.87 0.85 0.90 0.90 0.89 0.87 

Mawson 0.80 0.72 0.84 0.82 0.80 0.54 0.48 

Cape Point 0.54 0.76 0.74 0.58 0.54 0.66  0.70 

 

Table 4-3 Correlation coefficients between the simulated monthly mean surface 

concentrations and measurements from the University of Miami aerosol network for 

the sensitivity experiments and the control experiment.   

 

 

A comparison of the simulated surface concentrations with measurements shows that the 

model is able to predict the magnitude of the surface concentrations in the North Atlantic 

and at sites close to the Asian source region. However, at sites far from the Asian source 

region, the model overestimates the absolute magnitude of the dust concentrations by a 

factor of 15-30.  

 

This finding is similar to previous modelling studies in which the surface concentrations 

were predicted well close to the Asian source region, but overestimated in the central 

Pacific (Ginoux et al. 2001; Yue et al. 2009). The work of Yue et al., (2009) suggested that 

the overestimate of dust concentrations in the remote Pacific was caused by inaccuracies in 

the GCM fields use to drive the model. The GCM fields were taken from the IAP9L-

AGCM (Liang 1996).  

 

In the work of Ginoux et al., (2001) surface concentrations were overestimated by a factor 

of 3-5 in the central Pacific.  The discrepancy was attributed to an incorrect 

parameterisation of the soil size distribution in Asia. The simulated volume size 

distribution over Asia was compared to retrievals of volume size distribution derived from 

AERONET data (Dubovik and King 2000) and it was found that the model over estimated 

small particles with diameter 1.5µm by a factor of 3-5. The soil size distribution was 

calculated using the Zobler soil texture map (Zobler 1986) which is also used in the LPJ-

dust model.  
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Figure 4-25 Simulated monthly mean surface concentrations for the sensitivity 

experiments compared to the measurements from the University of Miami aerosol 

network. The measurements are shown in (blue dashed), control experiment (pink), 

seasonally invariant FPAR (green), snow cover (blue), soil moisture (violet) and wet 

deposition (brown circles).  Wind speeds fixed to July values every year (orange line) 

and January (orange dotted line)   
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Future development work on the LPJ-dust model could compare the soil size distribution 

to observational data to investigate if the soil size distribution overestimated in Asia.    

 

Tegen et al., (2002) found the opposite result. Surface concentrations were underestimated 

in the North Atlantic and in the Pacific close to the source by a factor of 2-4 but there was 

good agreement in the remote Pacific. It was suggested that the underestimate in surface 

emissions was because anthropogenic disturbances caused by agriculture were not included 

in the model. Another explanation was that ERA-40 wind speeds were much lower than in 

reality. The ERA-40 reanalysis data requires data from meteorological stations which are 

sparsely distributed in remote dust source regions. This means that the reconstructed wind 

speeds may be less accurate in regions where there are little or no meteorological stations 

(Trenberth and Olson 1988).   

 

The second aim of this chapter was to investigate which factors are responsible for the 

seasonality in surface emissions and dust loadings after transport has taken place.  

 

In all regions maximum emissions occured when low precipitation combined with a high 

frequency of wind speed events greater than 2ms
-1
. In Patagonia, surface emissions were 

strongly anti-correlated with precipitation because wind speeds exceeded 2ms
-1
 

continuously throughout the year.  The seasonality in soil moisture over Patagonia affected 

the seasonality in the dust loading over the Southern Ocean.  

 

The results of this study showed that maximum emissions occured from the Sahara in 

summer and from the Sahel in winter.  The seasonality in both regions could be understood 

in terms of seasonal variability in wind speeds and precipitation caused by north-south 

movement of the ITCZ.  In the winter North African dust from the Sahel is transported to 

the Amazon (Koren et al. 2006).  It has been shown that this dust provides nutrients such 

as phosphates to the Amazon (Swap et al. 1992). This implies that changes in wind speeds 

or precipitation which control the seasonality in the Sahelian dust emissions may have an 

impact on the productivity in the Amazon.  
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5 Inter-annual variability in the global dust cycle   

The LPJ-dust model can be used to test whether the contraction and expansion of dust 

source regions explains observed trends in the atmospheric dust loading on decadal time 

scales. In this chapter, the model is applied to two regions where vegetation cover is 

believed exert a control on the size of the source regions. The regions to be studied are 

North Africa and China.  

 

At Barbados, measurements of dust concentrations have been made since in 1965. The 

measurements show there has been a four fold increase in dust concentrations during the 

1980s relative to the 1960s (Prospero and Nees 1986). Only one modelling study has been 

reported in the literature which aimed at understanding the reason for this (Mahowald et al. 

2002). The model was unable to reproduce the high dust concentrations during 1984-1985 

relative to 1966-1967 and they concluded that there must have been a new desert source in 

North Africa caused by either a natural vegetation shift or desertification from land use.   

 

In Asia, the second region to be studied, observations show that there has been a 

decreasing trend in dust storms in China from the mid-1950s to the mid-1990s and an 

increase from 1997-2002 (Lu et al. 2003). There have been conflicting explanations for the 

decreasing trend. Observational studies have related this variability to changes in local 

wind speeds (Zhao 2004; Wang et al. 2006).  

 

Modelling studies have been carried out to investigate the cause of the inter-annual 

variability in Asian dust emissions. Hara et al., (2006) used a regional dust model to 

investigate the cause of the downward trend in springtime dust storms in China from 1973-

2004. It was found that the downward trend from the early 1980s to 1997 was caused by a 

decrease in the frequency of strong winds. Zhang et al. (2003) modelled Asian dust 

emissions using the Northern Aerosol Regional Climate Model (NARCM) from 1960 to 

2002. Surface wind speeds and precipitation, which controls soil moisture, were found to 

be the dominant factors that controlled the emissions. It was not possible to test whether 

changes in vegetation cover contributed to the viability in Asian dust emissions in these 

two studies because dynamic vegetation was not included in the models.  
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There is evidence to suggest that changes in vegetation cover contributes to the inter-

annual variability in Asian dust emissions (Zou and Zhai 2004).  It was shown using NDVI 

data that springtime dust storm frequencies were anti-correlated with springtime vegetation 

cover in Northern China and in Central and Eastern Mongolia over the years 1982-2001.    

 

In this chapter the LPJ-dust model is used to test two hypothesises; 

  

1. Changes in vegetation cover at the Sahara-Sahelian boundary are responsible for the 

increase in dust concentrations observed at Barbados during the 1980s relative to the 

1960s (Mahowald et al. 2002).  

 

2. Changes in vegetation cover have contributed to the variability in springtime dust 

storm frequency in Northern China (Zou and Zhai 2004).   

 

To test the first hypothesis an long LPJ-dust simulation is run and the simulated surface 

concentrations are compared to the Barbados dust record. To assess how well the LPJ-dust 

model predicts inter-annual variability in surface concentrations at other locations the 

simulated surface concentrations at sites in the University of Miami aerosol network are 

compared to another modelling study (Mahowald et al. 2003).  

 

To test the second hypothesis a comparison is made between simulated visibility and 

visibility measurements from meteorological stations in Northern China compiled by 

(Mahowald et al. 2007). Sensitivity studies are carried out to test if vegetation cover has 

contributed to the variability in springtime visibility in Asia. The sensitivity studies also 

investigate the impact of soil moisture, surface wind speeds, snow cover, surface emissions 

and wet deposition on the springtime visibility.  

 

 

5.1 Experimental setup  

The LPJ-dust model is run for the period 1958-2000 using threshold parameters and the 

size-dependent removal scheme determined from the model tuning carried out in chapter 3. 

This simulation period is chosen as it coincides with the availability of ERA-40 reanalysis 

data and dust concentration measurements from the University of Miami aerosol network. 
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The total column dust loading and surface concentrations are output on a daily basis for the 

years 1958-2000.  

 

5.2 Vegetation constraints on North African dust emissions  

Figure 5-1 shows the annual mean simulated and measured surface concentrations at 

Barbados. The correlation coefficient over the complete period 1965-2000 is very poor 

(r=0.34). However, between 1965 and 1978 the model does a very good job at predicting 

the annual mean surface concentrations. The correlation coefficient over this period is 0.82 

which is statistically significant to the 95% confidence level (p=0.04).   

 

The model is predicts high dust concentrations at Barbados from 1993 to 2000. A 

preliminary analysis shows that this is not caused by a sharp increase in North African dust 

emissions but rather from a reduction in the amount of dust removed by wet deposition 

over the North Atlantic.  This is an interesting result because it was shown in Chapter 4 

that the model was successful at predicting the seasonality in surface concentrations at sites 

in the North Atlantic (Barbados, Miami and Bermuda) when simulations are run for the 

years 1990-2000.  

 

The measurements show a period of years (1983, 1984, 1985 and 1987) where dust 

concentrations are persistently high.  These high dust concentrations are underestimated by 

the model. The measurements show maximum concentrations during 1983 when the 

annual mean concentrations are 30µgm
-3
. In contrast to this, the model predicts 

concentrations of 19.9µgm
-3
 for the same year.  The underestimate by the model suggests 

that the LPJ-dust model has missing processes. These missing processes have caused 

emissions from North Africa to increase up to 60% during the 1980s. 

 

Figure 5-2 (a) shows the annual mean FPAR over the Sahel and Sahara for the year 1966 

when the measurements of dust concentrations at Barbados are low.  Figure 5-2 (b) shows 

the annual mean FPAR over the Sahel and Sahara for the year 1984 when measurements of 

dust concentrations at Barbados are high. The position of the Sahara-Sahelian boundary 

line was further south in 1984 than in 1966. 

  

The southward movement of the Sahara-Sahelian boundary line has been observed from 

NDVI data from the AVHRR (Tucker and Nicholson 1999). An analysis for NDVI data 
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from 1980-1990 showed that the Sahara-Sahelian boundary was at its most southerly 

position in 1984. This can be explained by the fact there was a prolonged period of drought 

in the North Africa during the 1980s. Rainfall measurements from the Sahel show that this 

was the driest decade of the century (Nicholson 1993).  

 

Figure 5-2 (c) and (d) shows the annual mean surface emissions for the same years. It can 

be seen that the southward movement of the Sahara-Sahelian boundary line in 1984 

compared to 1966 resulted in an expansion of the Sahara. Increased emissions are seen 

south of 18
o
N in 1984. Over the Sahel at latitudes 10-20

o
N and longitudes 17

 o
W to 40

o
E, 

there was a doubling of emissions between 1966 and 1984. The total emissions of particles 

with diameter less than 220µm is 1.1Mtyr
-1
 in 1966. This increased to 2.2Mtyr

-1
 in 1984.  

 

These results indicate that even though there was an expansion of the Sahara caused by 

vegetation changes in the Sahel during the 1980s, this is not enough to account for the high 

dust concentrations at Barbados.  

 

Another possible reason why the model underestimates dust concentrations during the 

1980s is because preferential dust source regions are not accounted for in the LPJ-dust 

model. It is possible that during the 1980s there was a climatic change that increased 

emissions from preferential sources. An experiment which includes preferential sources is 

carried out to test whether their inclusion improves the ability of the LPJ-dust model to 

predict the high dust concentrations observed at Barbados during the 1980s. 

 

Preferential source are assumed to be present in regions where lakes existed in the past in 

which highly erodible alluvium sediment has accumulated. The same approach was taken 

by Tegen et al., (2002). A static map of preferential source data was provided by Ina Tegen 

and is shown in Figure 5-3.  

 

The location of dried out lake beds are identified using the HYDrological Routing 

Algorithm (Coe 1998). HYDRA uses a land surface topography map to calculate the extent 

of lakes as a function of precipitation, run off and surface evaporation. The HYDRA model 

was run using unlimited precipitation and the difference between simulated lakes and lakes 

present today indicates places where lakes would have existed in the past under a wetter 

climate. If a preferential dust source is present then the particle size distribution is 

modified to reflect the fact there is more fine grain sediment on the surface. The mean 
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particle radius for preferential source in the northern hemisphere is 15µm and in the 

southern hemisphere is 27µm.  

 

Figure 5-4 shows the simulated annual mean surface concentrations at Barbados when the 

preferential dust source regions are included and the measurement data. Including the 

preferential dust source regions increases the amount of dust transported to Barbados. 

However, the model is still unable to reproduce the high concentrations during the 1980s 

relative to the low concentrations during the 1960s. The correlation coefficient between the 

simulated dust concentrations and the observations only increases from 0.34 to 0.37 when 

preferential dust source regions are included. 

 

Another possible explanation for why the LPJ-dust model under predicts the dust 

concentrations during the 1980s is because new preferential sources have been created. A 

possible example for this is Lake Chad.  Lake Chad has reduced in size from an area 

covering approximately 25,000km
2
 in 1963 to 1350km

2
 in 1996 (Grove 1996). It has been 

shown that the fastest decline occurred between 1983-1994 when water use for irrigation 

increased four fold (Coe and Foley 2001). That study concluded that 50% of the variability 

was caused by the climate and 50% was caused by human water use.  

 

Mahowald et al., (2002) investigated whether the reduction in the size of Lake Chad has 

increased dust concentrations at Barbados using a dust cycle model. It was found that the 

additional dust emissions arising from a reduction in Lake Chad was not sufficient to cause 

the increase observed at Barbados during the 1980s. Furthermore, satellite observations 

using TOMS aerosol index indicate that Lake Chad is not a strong emitter of dust and that 

most dust in this region comes not from Lake Chad but from the Bodele depression 

(Prospero et al. 2002).  
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Figure 5-1 Simulated and measured annual mean surface concentrations at 

Barbados.  The correlation coefficient between 1965 and 1978 is 0.82. Thereafter, the 

model is unable to predict the inter-annual variability.    

 

 

5.3 Comparison between simulated surface concentrations and 

observations  

 

Figure 5-5 shows the simulated annual mean dust concentrations and measurements from 

the University of Miami aerosol network. There are 12 sites in the network that contain 

more than 12 months of measurements. The correlation coefficients between the simulated 

annual mean surface concentrations and the observations are listed in Table 5-1. The 

correlation coefficients are calculated over the period 1979-2000 so a comparison can be 

made with the modelling study of Mahowald et al., (2003).  The correlation coefficients 

from the modelling study of Mahowald et al., (2003) are also included in Table 5-1. 

 

The comparison with the measurement data shows that the model over predicts the 

magnitude of the surface concentrations at sites in the Pacific at Enewtak, Funafuti, 

Midway Island and Hawaii (note the different scale on the y axis) but is successful at 

predicting the relative year to year variability. The overestimate in surface concentrations 

at sites in the remote Pacific were also evident in the monthly mean surface concentrations 

in Chapter 4 (see section 4.2.2). 
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Figure 5-2 Annual mean FPAR and emissions predicted by LPJ Sahara-Sahelian 

boundary for the years 1984 and 1966.   
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Figure 5-3 Areal coverage of preferential dust sources regions calculated from the 

extent of potential lake areas using HYDrological Routing Algorithm (Coe 1998).    

 

 

 

 

Figure 5-4 Simulated annual mean surfaces concentrations at Barbados when 

preferential dust source regions are included. 
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The inter-annual variability is predicted well at Cape Grim (r=0.7) and Norfolk Island 

(0.77) which are influenced by Australian dust emissions. The correlation coefficients are 

high at these sites but the number of months of measurement data is low.   

 

The model does a poor job at predicting the inter-annual variability at sites in the North 

Atlantic (Barbados, Bermuda and Miami) even though these sites have the greatest amount 

of measurement data. The correlation coefficients for Izaña and Mace Head are better than 

other sites in the North Atlantic but are still lower than those in the Pacific.  

 

It can be seen from Table 5-1 that the LPJ-dust model performs better than the model used 

by Mahowald et al., (2003) at the sites affected by Asian dust but worse at sites affected by 

North African dust. This suggests that some processes that control the inter-annual 

variability in North African dust emissions are missing in the LPJ-dust model but present 

in the Mahowald et al., (2003) model.  

 

The model used by Mahowald et al., (2003) is different in many ways to the LPJ-dust and 

it is unsurprising that there are differences. Their model uses the Desert Entrainment and 

Deposition model (DEAD) (Zender et al. 2003a). This scheme identifies source regions as 

topographic lows using a surface elevation map. The bare ground fraction is related to the 

leaf area index using a vegetation dataset derived from the advanced very high resolution 

radiometer data (AVHRR).  Changes in the vegetation cover caused by fire or land use will 

be picked up by the AVHRR data but will not be present in the LPJ vegetation. Fire and 

land use are not included in the LPJ-dust model and this may one reason why the LPJ-dust 

model does not perform as well over North Africa as the Mahowald et al., (2003) model.   

 

There are several possible reasons why the LPJ-dust model performs better in Asia than the 

Mahowald et al., (2003) model.  One explanation is that estimates of the Asian emissions 

are improved when the soil moisture is consistent with the vegetation cover as in the case 

of the LPJ-dust model. Another possible reason is that forcing the model with ERA-40 

reanalysis data using TOMCAT gives better results than using NCEP reanalysis data with 

the MATCH chemical transport model. The wet deposition scheme used by the LPJ-dust 

model is simpler than that use by the Mahowald et al., (2003) model which includes in-

cloud scavenging as well as sub cloud scavenging. It is possible that the more simplified 

removal scheme gives better estimates of dust concentrations.  
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5.4 Vegetation constraints on Asian dust emissions  

This section tests whether changes in vegetation cover have contributed to the variability in 

springtime dust storm frequency in Northern China. Observations of visibility have been 

obtained from Natalie Mahowald by personal communication. The global dataset has been 

compiled from meteorological stations located in dusty regions (Mahowald et al. 2007).  

 

Visibility is defined as the distance in meters from which a large black object can be seen 

against the sky at the horizon (Seinfeld 1998). The visibility data contains the fraction of 

the month when the visibility is less than 5km. The data is available on a monthly time step 

and extends from 1900 to 2004. Most of the reliable data is available from 1974 to 2003 

(Mahowald et al. 2007). Visibility measurements for March and April over Northern China 

(30
 o
N to 50

o
N and longitudes 90

 o
E to 130

o
E ) are extracted from the dataset.  

 

In order to compare to the modelled data with the visibility observations, the daily surface 

concentrations are converted into visibility. There are many ways to convert dust 

concentrations to visibility which are based on empirical relationships between 

measurements of dust concentrations and visibility (Woodruff 1957; Patterson and Gillette 

1977; Dayan et al. 2008). The relationship between the visibility and dust concentrations 

depends on the size of the dust particles and the degree to which the dust attenuates light 

by scattering and absorption.  

 

The relationship used to convert dust concentrations to visibility is taken from Ette and 

Olorode (1988).  Several other relationships were tested but this one gave the best 

correlation coefficients with the measured visibility data.   



Chapter 5: Inter-annual variability in the global dust cycle 

 140 

 

 

 

 

Figure 5-5 Comparison of simulated annual mean surface concentrations and 

measurements from the University of Miami aerosol network.    
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Years LPJ-dust Mahowald et al., 

2003 

Number of months of 

1979-2000 Annual correlation Annual correlation data 

Barbados  0.03 0.38 390 

Bermuda  -0.56 0.84 108 

Cape Grim  0.70 - 40 

Cheju  1.0 - 18 

Enewtak  0.75 0.71 43 

Funafuti  0.73 - 39 

Hawaii  0.94 0.48 62 

Izaña  0.60 0.64 104 

Mace Head  0.48 -0.53 59 

Miami  0.06 0.03 260 

Midway Island 0.65 -0.41 109 

Norfolk Island  0.77 0.39 44 

 

Table 5-1 Correlation coefficients between the simulated annual mean surface 

concentrations and measurements from the University of Miami aerosol network. 

The correlation coefficients from the modelling study by Mahowald et al., (2003) are 

also listed. Sites where the LPJ-dust model performs better than the Mahowald et al., 

(2003) model are highlighted in bold. 

 

The visibility is calculated using the following relationship 
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where M is the monthly simulated surface concentrations, a=1600 (µgm
-3
km) and b=0.62 

(dimensionless). 

 

Figure 5-6 shows the fraction of the month when the visibility is less than 5km averaged 

for March and April over Northern China. Data is shown for observations and the model. 

March and April are selected for study as this is time of year when the majority of dust 

storms occur in Asia. This was shown in Chapter 4. The measurement data are averaged 

for sites in Northern China with latitudes 30-50
o
N and longitudes 90-130

o
E. Similarly, the 

modelled visibility is taken for model grid points where the measurements data is 

available.  

 

It can be seen from Figure 5-6 that the model overestimates the fraction of the month when 

the visibility is less than 5km by a factor of 10. There are three possible reasons for this 

overestimation.  
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The first is that the model overestimates dust emissions from Northern China. In section 0 

a comparison was made between simulated and measured surface concentrations. It was 

seen that the model over estimates surface concentrations at sites at Enewtak by a factor of 

6.2, Hawaii by a factor of 5 Midway Island by a factor of 20. The overestimate of Asian 

dust emission was also highlighted in section 4.2.2. 

 

The second reason why the model overestimates the fraction of the month when the 

visibility is less than 5km may be because of an uncertainty in the relationship used to 

convert the surface concentrations data to visibility. The visibility is dependent on the dust 

particle size. The relationship used to convert the surface concentrations to visibility is 

valid for dust with diameter less than 3.2µm, while the simulated surface concentrations 

consists of dust with diameter ranging from 0.1-220µm. Furthermore, the visibility is 

dependent on the optical properties of the dust which varies from region to region.  The 

third reason is that the visibility measurements may not be reliable. The visibility 

observations are made by eye which makes the data rather subjective. 

 

Figure 5-6 shows that the model under predicts the visibility from 1975-1981 but agrees 

well with the observational data after that.  A similar finding was reported by O Hara et al., 

(2006) who used a regional dust model to predict visibility in the Gobi. Their model under 

predicted springtime visibility from 1972-1981 but agreed well from 1981 to 2003.  

 

The LPJ-dust model is able to predict the overall downward trend between 1983 and 2000 

which consists of a downward trend between 1983 and 1992, a subsequent increase from 

1992-1994, a decrease from 1994-1997 and an increase from 1997-1998.  The correlation 

coefficient between 1983 and 2000 is 0.53 which is significant to the 95% confidence level 

(p=0.02).  

 

Figure 5-7 (a) and (b) shows the monthly FPAR averaged from March to April from LPJ 

over Northern China for a year with high springtime visibility (1984) and a year with low 

springtime visibility (1997). There is no well defined vegetation shift in this region, unlike 

in the Sahara-Sahel. Figure 5-7 (c) and (d) shows that there are more emissions in 1984 

when springtime visibility is high compared to 1997 when springtime visibility is lower. In 

spring 1984 the total emissions of particles with diameter less than 220µm is 16,265gm
-2
. 

This is reduced to 7650 gm
-2
 in spring 1997 when visibility is lower.  There is no obvious 

change in vegetation cover between these years which suggests that another processes is 
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responsible for the decrease in emissions. Sensitivity studies are carried out in the next 

section to test which processes are responsible for the change.   

 

 

Figure 5-6 The fraction the month when the visibility is less than 5km, averaged for 

March and April. The measurement data is averaged for all sites in Northern China 

(30-50
o
N and 90-130

o
E). The simulated data is averaged for corresponding model grid 

points where the measurement data exists. Data from 17 measurement sites are used.    
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Figure 5-7 Monthly surface emissions and monthly FPAR averaged for March and 

April simulated by LPJ over North China.  
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5.4.1 Sensitivity studies   

Six sets of sensitivity experiments are carried out to test whether the decline in springtime 

visibility in Asia is caused by changes in snow cover, soil moisture, surface wind speeds, 

vegetation cover, emissions or wet deposition. The sensitivity experiments are described in 

further detail below. The experiment described in 5.1 is used as the control experiment.   

  

 

Vegetation cover  

The surface emissions are calculated using the mean vegetation and mean FPAR over the 

period 1958-2000. The mean FPAR refers the mean climatology calculated from the mean 

of all the Januarys, Februarys etc. for each year. The mean vegetation cover is calculated 

by taking the mean of the annual growing degree days, tree height and foliage projective 

cover from 1958-2000.  A biome map is produced using the mean annual growing degree 

days, tree height and foliage projective cover using the scheme developed Joos et al., 

(2004). By taking this approach, the vegetation cover does not vary from year to year but it 

does vary seasonally with the seasonal FPAR. All the other parameters in the model are 

allowed to vary from year to year.  

 

Snow cover 

It was seen in Chapter 4 that snow cover affected the seasonality in surface concentrations 

at sites down wind of the Asian source. Thus, snow cover may play a role in determining 

the inter-annual variability in Asia. The surface emissions are calculated using the monthly 

mean climatological values for snow cover over the period 1958-2000.  

  

Soil moisture 

In this experiment, the surface emissions are calculated using the monthly mean 

climatological values for soil moisture over the period 1958-2000.  

 

Surface emissions 

This experiment takes into account the combined effects of changes in vegetation cover, 

soil moisture, snow cover and wind speeds. The model is run using mean surface emissions 

calculated over the period 1958 to 2000.  The mean surface emissions do not have any 

inter-annual variability but they do vary seasonally.  
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Wet deposition  

Wet deposition in the model is represented by the process of sub cloud scavenging. The 

scheme uses ERA-40 6 hourly convective precipitation, large scale precipitation, low cloud 

and medium cloud amount to calculate the amount of dust removed by wet deposition. To 

test if the inter-annual variability is caused by changes in the wet deposition the model is 

run using the monthly mean climatological values for the large scale precipitation and 

convective precipitation, low cloud amount and medium cloud amounts. All the other 

parameters in the model are allowed to vary from year-to-year.  

 

Surface wind speeds   

The surface emissions are calculated by fixing the 10m ERA-40 6 hourly surface wind 

speeds to the year 1958. This experiment is different from the previous experiments 

because the wind speeds are fixed to one year rather than calculating a long term mean 

over the simulation period. Taking the long term mean would average out periods of high 

wind speeds. Because there is a cubic dependency between the wind speeds and the dust 

flux, periods of high wind speeds will have a large impact on dust emissions.  

  

Figure 5-8 shows the measured and modelled fraction of the month when the visibility is 

below 5km, averaged for March-April, for each sensitivity experiment. The correlation 

coefficients between the simulated visibility and measurements are listed in  

Table 5-2 for each sensitivity experiment. The sensitivity studies show that the inter-annual 

variability in visibility is controlled by surface winds speeds. This is reflected in the 

reduction in the correlation coefficient from 0.53 to -0.15 when the winds speeds are fixed 

to the year 1958. This result is consistent with the work of Wang et al., (2006) who found, 

on the basis of field measurements conducted between 1960 and 2003, that the inter-annual 

variability in dust storm frequency in northern China was related to local wind speed 

activity. The results contradict the hypothesis that changes in springtime vegetation cover 

has contributed to the variability in dust storms in Northern China.  

 

Time period  Control Snow 

cover 

Vegetation 

cover 

Soil 

moisture 

10m 

wind 

1958 

Emissions Wet 

deposition 

        

1983-2000 0.53 -0.05 0.60 0.53 -0.15 -0.13 0.53 

 

Table 5-2 The correlation coefficient between the measured and modelled fraction of 

the month (March and April averaged) when the visibility is less than 5km.   
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Figure 5-8 The fraction of the March and April averaged when the visibility is less 

than 5km. The control experiment is shown in red, the measurements in blue and the 

sensitivity experiment in orange.  The modelled data over predicts the visibility by a 

factor of 10.  Possible explanations for this are in discussed in section 5.4. The 

simulated data has been scaled by dividing by 10 for the purpose of presenting the 

data.   
 

 

5.5 Discussion  

In this chapter the LPJ-dust model was used to study two regions where vegetation cover is 

believed to control the extent of the source regions on decadal time scales. The regions 

studied were North Africa and northern China. Two hypotheses were tested.    

 

The first hypothesis tested if the four fold increase in dust concentrations measured at 

Barbados during the 1980s relative to the 1960s may have been caused by an expansion of 

the Sahara by changes in vegetation cover or land use (Mahowald et al. 2002).  The model 

was successful at predicting the annual mean surface concentrations at Barbados between 

1965 and 1978 but underestimated the high dust concentrations during the 1980s relative to 

the 1960s. The simulated dust concentrations were 60% lower than the measurements in 

1983.   
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The results showed that there was an expansion of the Sahara in 1984 relative to 1966 

which resulted in a doubling of emissions from the Sahel, but that this was not enough to 

account for the high dust concentrations at measured at Barbados during the 1980s relative 

to the 1960s.  There was no substantial improvement in the model’s ability to capture the 

high dust concentrations at Barbados during the 1980s when preferential dust sources, in 

the form of dried out lake beds, are included in the model.  

 

Increased desertification from land use may have commenced after 1978 which has lead to 

a degradation of the soil and an increase in emissions. Mineral dust from anthropgenic 

sources comes from agricultural practices such as harvesting, grazing or ploughing or from 

changes in water levels as occurred in the Caspian and Aral sea region (Prospero et al. 

2002).  It is difficult to assess the impact of land use changes on dust emissions. If the land 

is cultivated intensively and uses irrigation then there will be a reduction in the erodibility 

of the soil. In contrast, if land use practices degrade the vegetation then there will be an 

increase in soil erodibility. This is further complicated by the fact that natural and 

anthropogenic dust mixes, making it difficult to detect the relative abundance of each 

downwind of the source regions.   

 

A study by Moulin and Chiapello (2006) showed by analysing TOMS AI data that the high 

concentrations at Barbados during the years 1983, 1987 and 1988 were caused by a 30-

50% increase in dust emissions in the Sahel region centred on southern Mali caused by 

human induced desertification. They suggested that the desertification was caused by the 

doubling of the population in the Sahel over the last 40 years.  

 

Indeed there are conflicting opinions over how much land use contributes to the total 

global dust loading. A study by Tegen and Fung (1995) incorporated disturbed sources 

caused by cultivation into a dust model. It was estimated that land use may contribute to 

30-50% of the global dust loading. A subsequent modelling study by Tegen et al., (2004) 

estimated that the contribution from land use was less than 10%. This estimate was derived 

by calibrating a dust model to dust storm frequency observations in agricultural regions.  

 

An analysis of remote sensing data over North Africa has suggested that the contribution 

from land use is not very large (Prospero et al., (2002). It was shown using TOMS AI that 

the major dust sources in North Africa are located in regions where with rainfall is less 

than 200-250mm per year. Agriculture and grazing takes place in these regions but is 
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localised and clustered around water sources. The majority of agriculture and grazing takes 

place south of the 200-250mm isohyets, which according to the TOMS data is actually a 

weak dust source.  

 

The second hypothesis tested whether changes in vegetation cover have contributed to the 

variability in springtime visibility in Northern China. Very little change in vegetation cover 

was predicted by the model for the years 1984 when visibility measurements where high 

and 1997 when visibility measurements were low. The sensitivity studies carried out show 

that vegetation cover did not contribute to the inter-annual variability in the springtime 

visibility. This contradicts the study of Zou and Zhai (2004). The springtime visibility 

between 1983 and 2000 was found to be controlled by wind speeds.  This is in agreement 

with Wang et al., (2006) who deduced from field measurements that the inter-annual 

variability in dust storm frequency in Northern China was related to local wind speeds.   

 

The result is also agrees with studies that have related the inter-annual variability in dust 

storm activity in Asia to climatic indices that control the wind speeds. Zhao et al., (2004) 

showed that the decline in the dust storm frequency in the Midwest Inner Mongolia of 

China was related to the number of days with wind speeds > 17ms
-1. 
They related the inter-

annual variability in dust storms to climatic indices which were representative of the large 

scale cold air activities.  

 

A large amount of data has been generated by the sensitivity studies. Time has not 

permitted an extensive analysis of this data. Analysing this data in more detail would make 

it possible to understand the processes responsible for the inter-annual variability in the 

dust cycle.  Although not presented here, a statistically significant correlation coefficient of 

0.82 was found between the total column dust loading over North Africa and the North 

Atlantic in winter and the winter NAO index between 1957 and 1971. Remote sensing 

studies have found a correlation over North Africa and the North Atlantic and the NAO 

index (Moulin et al. 1997; Chiapello and Moulin 2002; Chiapello et al. 2005; Evan et al. 

2006). The sensitivity studies could be used to investigate which meteorological conditions 

associated with the NAO control the total column dust loading. This would further our 

understanding of the processes which cause natural variability in the dust loading as 

opposed to the effects of human activity. It is important to understand the relative 

contribution of both of these factors in order to predict how the dust loading will change in 

the future.  
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6 Conclusions  

6.1 Summary of findings  

This section revisits the aims of the thesis set out in chapter 1 and discusses the extent to 

which the aims have been met.  

 

The primary aim of this work has been to develop a dust cycle model that uses the LPJ 

dynamic global vegetation model to calculate dust source areas. This work was motivated 

by the fact that existing dust cycle models did not include dynamic vegetation. This 

limitation meant that it was not possible to study the natural variability in the extent of 

desert regions caused by the transient response of vegetation cover to the climate.  The 

development of the LPJ-dust model has now made this possible.  

 

In Chapter 2 the new dust model was described. Dust source areas were identified as 

sparsely vegetated, dry regions and were calculated using LPJ simulated vegetation cover, 

soil moisture and snow cover. A preliminary study was carried out to test if LPJ could 

accurately predict the seasonal variability in vegetation cover. The timing of the minimum 

FPAR predicted by LPJ was compared to FPAR derived from the SeaWiFS sensor. LPJ 

predicted the timing of the minimum vegetation cover reasonably well in the Sahel, Asia, 

South America, and in the interior of South Africa.  In Australia LPJ predicted the timing 

of the minimum vegetation four months too early. This limited the ability of the model to 

predict the seasonality in surface emissions from Australia correctly.  

 

A base line LPJ-dust simulation was carried out and the annual mean surface emissions 

were compared to other modelling studies (Werner et al. 2002; Luo et al. 2003; Zender et 

al. 2003a; Ginoux et al. 2004; Miller et al. 2004; Tanaka and Chiba 2006). The surface 

emissions predicted by the baseline simulation were found to lie within the range of 

estimates predicted by other models. However, estimates of the surface emissions from the 

other modelling studies varied by a factor of 2. The comparison also showed regional 

differences in the surface emissions predicted by the models.  

 

The second aim of this thesis was to improve the performance of the LPJ-dust model by 

tuning the model.  In chapter 3 the threshold limits for soil moisture, FPAR and snow 

cover and the threshold friction velocity used to calculate the surface emission were tuned 
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using Latin Hypercube Sampling (McKay et al. 1979). In addition to this, three sub cloud 

scavenging schemes were also tested.  

 

The experiments were ranked using a skills score to determine the optimal match between 

the model output and multiple measurement datasets. The experiment with the highest 

skills score used threshold limits FPAR=0.37, soil moisture =7.79mm, snow depth =0.01m, 

with threshold friction velocities for each particle reduced by a factor of 0.55, combined 

with a size dependent removal scheme with rain droplet diameter 0.5mm.  

 

The results showed changing the sub-cloud scavenging scheme had more of an impact on 

the model performance than changing the threshold parameters.  The un-tuned model, 

which used the size independent sub cloud scavenging scheme, underestimated dust 

deposition to Greenland, the North Pacific and the North Atlantic, relative to other regions. 

This was improved by choosing the size dependent removal scheme with rain droplet 

diameter 0.5mm. Indeed, overall the best results were obtained for the size dependent 

removal scheme with rain droplet diameter 0.5mm. The worst results were found for the 

size independent sub cloud scavenging scheme.   

 

Even after tuning the model, there still remained a large uncertainty in the estimates of the 

annual mean surface emissions. The estimates ranged from 1136 to 4654 Mtyr
-1
 depending 

on the individual measurement dataset the model was compared to. The large uncertainty 

was caused by differences in datasets associated with different measurement techniques 

and the fact that the measurements were made over different time periods.  

 

The third aim of this thesis was to evaluate how well the tuned LPJ-dust model reproduced 

seasonality in the dust cycle. In Chapter 4 the simulated total column dust loading was 

compared to TOMS aerosol index. The model was reasonably successful at predicting the 

seasonality in the total column dust loading over North Africa, Asia, South Africa, South 

America, and North America but not in Australia.  In Australia the maximum surface 

emission occurred between August and December rather than as expected in DJF.  The 

early onset of maximum emissions coincided with when LPJ incorrectly predicted the 

timing of the minimum vegetation cover.  

 

A comparison between the simulated surface concentrations and measurements from the 

University of Miami aerosol network showed that the model did a reasonably good job at 
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predicting the magnitude of dust concentrations in the North Atlantic and at sites in the 

Pacific close to the Asian source. The model over predicted the surface concentrations at 

sites in the remote Pacific.  

 

In all regions maximum emissions occurred when low precipitation combined with a high 

frequency of wind speed events greater than 2ms
-1
. In Patagonia, surface emissions were 

strongly anti-correlated with precipitation because wind speeds exceeded 2ms
-1
 

continuously throughout the year.  The seasonality in soil moisture over Patagonia affected 

the seasonality in the dust loading over the Southern Ocean. Vegetation cover was found to 

constrain dust emissions in North America, Central Asia, Eastern China and South Africa. 

 

A comparison between the simulated surface concentrations and measurements from the 

University of Miami aerosol network showed that including the seasonality in FPAR 

improved estimates of the surface concentrations down wind of the Asian source region. 

Including seasonality in soil moisture improved estimates of the surface concentrations 

down wind of Asia, North African and Patagonia.  

 

The fourth  aim of this thesis was to use the LPJ-dust model to test whether the contraction 

and expansion of dust source regions explains observed trends in the atmospheric dust 

loading on decadal time scales. In Chapter 5 the LPJ-dust model was used to study two 

regions where vegetation cover is believed exert control over the extent of the source areas.  

 

The first study tested if changes in vegetation cover in the Sahel could account for the four 

fold increase in dust concentrations measured at Barbados during the 1980s relative to the 

1960s. The results showed that there was an expansion of the Sahara in 1984 relative to 

1966 which resulted in a doubling of emissions from the Sahel. This was not enough to 

account for the high dust concentrations measured at Barbados during the 1980s relative to 

the 1960s.  There was no substantial improvement in the model’s ability to capture the high 

dust concentrations at Barbados during the 1980s when preferential dust sources, in the 

form of dried out lake beds, are included in the model.  

 

The second study tested if changes in vegetation cover have contributed to the variability 

in springtime visibility in Northern China. Vegetation cover was not found to contribute to 

the variability in springtime visibility between 1983 and 2000. The variability was 

controlled by wind speeds. This contradicts the work of Zou and Zhai (2004) who showed 
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that vegetation cover in North China was anti-correlated with springtime dust storm 

frequencies.  

 

6.2 Future Work  

The use of a DGVM within the framework of a dust cycle model represents an 

advancement in the area of dust cycle modelling. However, the model developed in this 

thesis has limitations which could benefit from further work. 

 

The results presented in chapter 4 showed that the LPJ-dust model was unable to simulate 

the seasonality in dust emissions from Australia because LPJ could not simulate the timing 

of minimum vegetation cover correctly. Future work could focus on improving the LPJ 

model. The current set of PFTs in LPJ may not be enough to represent all the vegetation 

types so these could be extended. In particular, LPJ does not include shrub PFTs which 

may be important in arid and semi-arid regions.  

 

This development work would involve introducing new PFT into LPJ which have 

properties specific to shrubs. These properties would incorporate the fact that that new leaf 

growth occurs quickly after rainfall in shrubs (Mooney 1981). During periods of drought, 

the stomata reduce in size so that less water is lost by transpiration (Smith 1997). The rate 

of photosynthesis in shrubs remains high even during drought condition (Wilson 1998).   

 

Shrub PFTs have already been introduced into the community Land Model–DGVM 

(CLM-DGVM) using theses types of PFT properties (Zeng et al. 2008).   Including shrub 

PFTs into LPJ would provide a better prediction of vegetation cover in arid and semi-arid 

region. As a result this may improve the ability of the model to predict the seasonality in 

surface emissions from Australia.  

 

Further LPJ development work could be carried out to improve the parameterisation of 

vegetation disturbance by fire. At present LPJ takes a very simplistic approach to fire.  Fire 

is assumed to occur when sufficient fuel in the form of dry material is available. Ignition 

sources are assumed to be available whenever fire is possible. In reality ignition sources 

are not always available and are often sporadic. Ignition sources can occur from lighting 

strikes or by humans.  
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The version of LPJ used in this thesis does not contain vegetation disturbance by 

agriculture or land management. There is a version of LPJ currently available that includes 

managed lands and irrigation (Bondeau et al. 2007). This version uses a land use data set to 

identify different Crop Functional Types. Theses Crop Functional Types work in much the 

same way as PFT already in LPJ. An experiment could be carried out in which the 

managed land version of LPJ is used to calculate dust source areas. It would be interesting 

to investigate whether this improves estimates of surface concentrations at Barbados 

particularly during the 1980s.   

 

Another area for future development is to include a better way of treating the surface 

roughness in the LPJ-dust model. The roughness length is used to modify the vertical wind 

profile and is related to the presence of vegetation cover or other non erodible obstacles on 

the surface.   Because of the cubic relationship between the wind speed and the dust flux, 

the way in which the roughness length is treated may have a large impact on the surface 

emissions. The LPJ-dust model uses a fixed surface roughness of 0.001m which is typical 

of level desert (Seinfeld 1998). A remote sensing derived dataset such as that from the ESR 

backscattering radiometer could be used  (Prigent et al. 2005). Alternatively, the roughness 

length could be parameterised as a function of the leaf area index and the stand height of 

the vegetation cover simulated by LPJ using an empirical relationship such as that by 

Lindroth (1993).  

 

A further way to improve the LPJ-dust model is to include a parameterisation for sub-grid 

scale gustiness. One possible way to do this is to apply a probability distribution function 

to the wind speed data.  A Weibull probability density function was used by Grini et al. 

(2005).  Cakmur et al., (2006) parameterised sub-grid scale gustiness by constructing a 

probability distribution of wind speed within each grid box that depends upon the speed 

explicitly calculated by a GCM and the magnitude of fluctuations about this speed. Both 

these studies found an improvement in the estimates of the surface emission when 

gustiness was included.  

 

Another improvement to the LPJ-dust model would be to include preferential dust source 

regions.  It was found that representing preferential dust sources as paleo lake beds in the 

same way as Tegen et al., (2002) did very little to improve estimates of surface 

concentrations at Barbados. However, there are other ways to parameterise preferential 

source regions that could be used. Three different approaches to parameterisation were 
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tested by Zender et al., (2003b). The first approach was to relate the erodibility of the 

surface to topographic lows using a digital elevations map. The second way as to make the 

erodibility proportional to the number of grid cells upstream that flow into a grid box. The 

third way was to make the erodibility proportional to the surface run off where the surface 

run off was obtained from the NCAR Land Surface Model (Bonan 1996).  This would 

account for dust regions that become more active after temporary hydrological activity or 

inundation. This is typical of what happen in clay pans such as in North Lake Eyre in 

Australia (McTainsh 1999).  It was found all three parameterisations produced better 

agreement with station and satellite data, but the second scheme produced the best results. 

The three parameterisations could be tested in the LPJ-dust model as they only require a 

digital elevation map and surface run off data. The surface run off data is already simulated 

in LPJ. Experiments could be run to investigate if any of these parameterisations improve 

estimates of the surface emissions.  

 

An additional area of further development could focus on improving the experimental 

design of the LPJ-dust model. Currently LPJ and the surface emission scheme is run on a 

0.5 x 0.5 degree spatial resolution. The surface emissions are interpolated onto a T42 

resolution for input into TOMCAT.  This could be modified so that LPJ and the emission 

scheme are run on a T42 spatial resolution. If this does not affect the performance of the 

model, then running LPJ and the surface emission scheme on a T42 resolution would 

decrease the simulation time and remove the need to interpolate the emissions.  

 

Future dust modelling studies would benefit from the availability of more measurement 

data. In particular there is a scarcity of global data that can be used to validate model 

estimates of dust sources. Remote sensing data such as TOMS AI has a temporal resolution 

of one day which means that dust will have been transported from the source region 

making it difficult to identify the origin. One solution is to take advantage of new remote 

sensing data that has a high temporal resolution. Schepanski et al., (2009) analysed 15 

minute Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared 

Imager (SEVIRI) infrared dust index images to identify dust source areas over North 

Africa on a 1
o
 x 1

o
 grid.  This type of data could be used to identify the spatial distribution 

of dust emissions.  

 

Furthermore, there is lack of long term measurements that span decades. This type of data 

is very valuable for understanding decadal scale changes in the dust loading.  Although the 



Chapter 6: Conclusions 

 156 

Barbados dust record has been useful to validate inter-annual variability in North African 

dust emissions, it is only representative of one point location. Visibility data has been used 

in the absence of other long term measurements to validate the LPJ-dust model in Northern 

China.  This is type of data is semi-quantitative because it depends on the observer’s ability 

to distinguish a large black object from the horizon.   

 

The LPJ-dust model does not use any remote sensing input data; therefore, future work 

could also include the application of the LPJ-dust model to the past or future climate. It 

would be interesting to test if the model could reproduce the 2-25 increase in dust 

deposition rates at high latitudes that are observed in ice core records at the LGM  

(Lambert et al. 2008). The performance of the LPJ-dust model could be compared to other 

dust simulations for the LGM (Mahowald et al. 1999; Werner et al. 2002; Mahowald 

2006).  

 

The LPJ-dust model could be used to estimate the future atmospheric dust loading in a 

climate with elevated CO2.  Modelling studies have shown that if vegetation cover is 

allowed to respond to elevated CO2 then dust emissions will decrease in the future 

(Mahowald and Luo 2003; Mahowald 2006; Mahowald 2007). Conditions of elevated CO2 

increases plant water use efficiently which enhances the ability of vegetation to survive 

under arid conditions. These studies have all used the BIOME4 model.  Using the LPJ-dust 

model would make it possible to predict the year to year variability in dust emissions in 

response to changes in the future climate which was not possible using BIOME4.  

 

This thesis has described the development and application of a new dust cycle model. 

There are many limitations to the new model and the potential for further model 

development. One of the major challenges faced is to incorporate anthropogenic dust 

sources into dust cycle models. Currently the IPCC estimates that dust direct radiative 

forcing ranges from -0.56 to +0.1Wms
-2
 (Forster 2007).  This estimate assumes an 

anthropogenic contribution of 0% to 20%. The results of this work suggest that the 

anthropogenic contribution may be as high as 60%.   
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Appendix  

Modifications made to TOMCAT source code to store the convection/diffusion matrix 

in memory.  

 

*B,SLIMCAT.16 

c     *** the convection matrix was written to fort.19 every 6 hours and 

c     *** read back in every 1 hour. To improve the simulation time store  

c     *** the variable in memory  

c     *** These are the changes needed 

c     ***common block to share CONVC between CONVMA and CONSOM 

      REAL CONVC(LON,LAT,NIV,NIV) 

      COMMON /CONVCC/ CONVC 

*D,CONSOM.30 

      REAL CONVC(LON,LAT,NIV,NIV) 

      COMMON /CONVCC/ CONVC 

*D,CONSOM.34 

c     *** REMOVE REWIND CONV 

*D,CONSOM.39 

c     *** REMOVE READ CONVC 

*D,CONSOM.56,59 

      ZRXZM(I,L)=CONVC(I,J,L,L)*SXZ(I,J,L,JV)    

      ZRYZM(I,L)=CONVC(I,J,L,L)*SYZ(I,J,L,JV)               

      ZRZZM(I,L)=CONVC(I,J,L,L)*SZZ(I,J,L,JV)             

      ZRZM (I,L)=CONVC(I,J,L,L)*SZ (I,J,L,JV)   

*D,CONSOM.66,71 

      ZRM  (I,L)=ZRM  (I,L)+CONVC(I,J,L,K)*S0 (I,J,K,JV)         

      ZRXM (I,L)=ZRXM (I,L)+CONVC(I,J,L,K)*SX (I,J,K,JV)     

      ZRYM (I,L)=ZRYM (I,L)+CONVC(I,J,L,K)*SY (I,J,K,JV)     

      ZRXXM(I,L)=ZRXXM(I,L)+CONVC(I,J,L,K)*SXX(I,J,K,JV)     

      ZRXYM(I,L)=ZRXYM(I,L)+CONVC(I,J,L,K)*SXY(I,J,K,JV)     

      ZRYYM(I,L)=ZRYYM(I,L)+CONVC(I,J,L,K)*SYY(I,J,K,JV)     

*D,CONSOM.105 

      ZTOTM(I,L)=ZTOTM(I,L)+CONVC(I,J,L,K)*SM(I,J,K)     

*D,DIFCON.39 

C  common block to share CONVC between CONVMA and CONSOM 

      REAL CONVC(LON,LAT,NIV,NIV) 

      COMMON /CONVCC/ CONVC 

*D,DIFCON.315 

      CONVC(I,J,L,K)=G(L,K) 

*D,DIFCON.321                                     

c     *** REMOVE WRITE CONVC  
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  Tuneable parameters Tuning Factor  

Expt ID 

 

Removal Scheme 

 

FPAR 

 

Soil 

Moist 

Snow 

 

TFVSF 

 

 

DIRTMAP 

 

Ginoux 

 

Miami 

 

NRMSE 

 

23 Slinn droplet=0.5mm 0.37 7.79 0.10 0.55 2.70 4.10 1.00 1.20 

31 Slinn droplet=0.5mm 0.28 11.68 0.07 0.58 2.50 4.00 0.90 1.26 

36 Slinn droplet=0.5mm 0.49 10.53 0.00 0.68 4.30 5.80 1.70 1.28 

42 Slinn droplet=0.5mm 0.27 12.41 0.09 0.64 3.50 5.10 1.30 1.28 

33 Slinn droplet=0.5mm 0.33 9.49 0.08 0.90 18.60 18.70 10.10 1.28 

41 Slinn droplet=0.5mm 0.43 8.65 0.03 0.82 11.40 12.50 5.70 1.28 

27 Slinn droplet=0.5mm 0.46 15.75 0.06 0.41 1.10 1.90 0.30 1.29 

24 Slinn droplet=0.5mm 0.23 11.09 0.05 0.80 8.70 11.70 4.10 1.30 

25 Slinn droplet=0.5mm 0.32 13.56 0.07 0.93 20.80 20.10 10.40 1.33 

35 Slinn droplet=0.5mm 0.24 16.86 0.04 0.60 2.50 3.80 0.80 1.36 

38 Slinn droplet=0.5mm 0.40 14.93 0.04 0.78 6.80 8.30 2.70 1.36 

39 Slinn droplet=0.5mm 0.41 17.04 0.08 0.96 24.60 20.90 11.00 1.40 

28 Slinn droplet=0.5mm 0.36 18.47 0.05 0.71 4.30 5.30 1.50 1.41 

29 Slinn droplet=0.5mm 0.30 18.82 0.02 0.99 33.30 26.20 14.50 1.42 

26 Slinn droplet=0.5mm 0.21 21.50 0.02 0.46 1.40 2.10 0.30 1.43 

37 Slinn droplet=0.5mm 0.35 19.92 0.01 0.66 3.10 4.00 0.90 1.44 

22 Slinn droplet=0.5mm 0.50 20.00 0.01 0.66 3.10 3.90 0.90 1.44 

32 Slinn droplet=0.5mm 0.47 24.18 0.06 0.51 1.50 2.10 0.30 1.49 

40 Slinn droplet=0.5mm 0.44 21.24 0.09 0.87 11.50 11.30 3.80 1.50 

30 Slinn droplet=0.5mm 0.39 22.99 0.01 0.46 1.20 1.80 0.30 1.50 

34 Slinn droplet=0.5mm 0.25 23.88 0.03 0.73 4.90 6.10 1.30 1.53 

55 Slinn droplet=2mm 0.25 23.88 0.03 0.73 3.90 6.10 0.20 1.60 

56 Slinn droplet=2mm 0.24 16.86 0.04 0.60 1.80 3.70 0.10 1.60 

49 Slinn droplet=2mm 0.36 18.47 0.05 0.71 3.30 5.20 0.20 1.63 

50 Slinn droplet=2mm 0.30 18.82 0.02 0.99 29.50 26.00 1.90 1.65 

45 Slinn droplet=2mm 0.23 11.09 0.05 0.80 6.50 11.60 0.60 1.66 

43 Slinn droplet=2mm 0.50 20.00 0.01 0.66 2.40 3.80 0.10 1.66 

61 Slinn droplet=2mm 0.44 21.24 0.09 0.87 9.70 11.20 0.50 1.66 

59 Slinn droplet=2mm 0.40 14.93 0.04 0.78 5.30 8.20 0.30 1.67 

52 Slinn droplet=2mm 0.28 11.68 0.07 0.58 1.70 4.00 0.10 1.67 

58 Slinn droplet=2mm 0.35 19.92 0.01 0.66 2.40 4.00 0.10 1.68 

46 Slinn droplet=2mm 0.32 13.56 0.07 0.93 17.50 19.90 1.20 1.68 

63 Slinn droplet=2mm 0.27 12.41 0.09 0.64 2.40 5.10 0.20 1.68 

60 Slinn droplet=2mm 0.41 17.04 0.08 0.96 21.40 20.80 1.20 1.69 

2 Brandt fixed 0.37 7.79 0.10 0.55 1.50 4.00 0.60 1.69 

54 Slinn droplet=2mm 0.33 9.49 0.08 0.90 14.50 18.50 1.20 1.71 

57 Slinn droplet=2mm 0.49 10.53 0.00 0.68 2.90 5.70 0.20 1.71 

62 Slinn droplet=2mm 0.43 8.65 0.03 0.82 8.40 12.40 0.70 1.73 

44 Slinn droplet=2mm 0.37 7.79 0.10 0.55 1.60 4.00 0.10 1.73 

15 Brandt fixed 0.49 10.53 0.00 0.68 2.90 5.70 0.90 1.73 

10 Brandt fixed 0.28 11.68 0.07 0.58 1.70 4.00 0.50 1.74 

21 Brandt fixed 0.27 12.41 0.09 0.64 2.30 5.10 0.60 1.74 

20 Brandt fixed 0.43 8.65 0.03 0.82 8.30 12.40 3.30 1.75 

12 Brandt fixed 0.33 9.49 0.08 0.90 14.30 18.60 5.90 1.76 

14 Brandt fixed 0.24 16.86 0.04 0.60 1.70 3.70 0.30 1.76 

3 Brandt fixed 0.23 11.09 0.05 0.80 6.40 11.60 2.20 1.77 

1 Brandt fixed 0.50 20.00 0.01 0.66 2.30 3.80 0.40 1.77 

16 Brandt fixed 0.35 19.92 0.01 0.66 2.30 4.00 0.40 1.77 

17 Brandt fixed 0.40 14.93 0.04 0.78 5.20 8.20 1.30 1.77 

6 Brandt fixed 0.46 15.75 0.06 0.41 0.70 1.80 0.10 1.78 

7 Brandt fixed 0.36 18.47 0.05 0.71 3.30 5.30 0.70 1.78 

4 Brandt fixed 0.32 13.56 0.07 0.93 17.10 20.00 5.50 1.78 

18 Brandt fixed 0.41 17.04 0.08 0.96 21.00 20.90 5.80 1.79 

8 Brandt fixed 0.30 18.82 0.02 0.99 28.90 26.10 8.00 1.79 

19 Brandt fixed 0.44 21.24 0.09 0.87 9.50 11.30 2.00 1.80 
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9 Brandt fixed 0.39 22.99 0.01 0.46 0.90 1.80 0.10 1.80 

13 Brandt fixed 0.25 23.88 0.03 0.73 3.80 6.10 0.60 1.80 

5 Brandt fixed 0.21 21.50 0.02 0.46 0.90 2.10 0.10 1.81 

11 Brandt fixed 0.47 24.18 0.06 0.51 1.10 2.10 0.10 1.83 

47 Slinn droplet=2mm 0.21 21.50 0.02 0.46 0.90 2.10 0.10 2.16 

53 Slinn droplet=2mm 0.47 24.18 0.06 0.51 1.10 2.10 0.10 2.30 

51 Slinn droplet=2mm 0.39 22.99 0.01 0.46 0.90 1.80 0.10 2.76 

48 Slinn droplet=2mm 0.46 15.75 0.06 0.41 0.70 1.80 0.10 3.27 

 

Table A. Tuning experiments ranked according to their total normalised root mean 

square error. The global tuning factors for each target dataset are listed. The best 

experiment is highlighted in blue and the un-tuned experiment in red.   
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